Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T08:24:26.224Z Has data issue: false hasContentIssue false

Effects of trenbolone acetate and zeranol on protein metabolism in male castrate andfemale lambs

Published online by Cambridge University Press:  09 March 2007

Patrick A. Sinnett-Smith
Affiliation:
Department of Applied Biochemistry and Food Science, University of Nottingham School of Agriculture, Sutton Bonington, Nr. Loughborough, Leics. LE12 5RD
Nicola W. Dumelow
Affiliation:
Department of Applied Biochemistry and Food Science, University of Nottingham School of Agriculture, Sutton Bonington, Nr. Loughborough, Leics. LE12 5RD
Peter J. Buttery
Affiliation:
Department of Applied Biochemistry and Food Science, University of Nottingham School of Agriculture, Sutton Bonington, Nr. Loughborough, Leics. LE12 5RD
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Tissue composition and skeletal muscle cathepsin D (EC 3.4.23.5) activity weremeasured in wether lambs treated with trenbolone acetate (TBA) and oestradiol-17β (Oe) in combination and female lambs treated with TBA or zeranol. Muscle and liver protein fractional synthesis rates and plasma leucine flux were measured in the female lambs.

2. Male castrate lambs treated with TBA plus Oe showed increased growth rate, improvedfood conversion efficiency, decreased muscle RNA concentration and decreased total cathepsin D activity in muscle.

3. Female lambs treated with TBA or zeranol showed increased weight gain, improved food conversion efficiency, decreased muscle RNA and DNA concentrations and decreased free cathepsin D activity in muscle. Mixed muscle protein fractional synthesis rate was decreasedafter TBA treatment. Plasma leucine flux, not corrected for oxidation or food intake, wasnot increased by TBA or zeranol treatment.

4. Treatment of female lambs with TBA or zeranol caused increased growth rate. This increased growth rate is probably due in part to decreased muscle protein degradation, since evidence was obtained that muscle protein synthesis is decreased by TBA and zeranol treatment.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

REFERENCES

Atkin, G. E. & Ferdinand, W. (1970). Analytical Biochemistry 38, 313329.CrossRefGoogle Scholar
Barrett, A. J. (1972). In Lysosomes: a Laboratory Handbook, pp. 42135 [Dingle, J. T., editor]. Amsterdam: North-Holland.Google Scholar
Borger, M. L., Wilson, L. L., Sink, J. D., Ziegler, J. H. & Davis, S. L. (1973). Journal of Animal Science 36, 706711.Google Scholar
Breuer, C. B. & Florini, J. R. (1966). Biochemistry, New York 5, 38573865.CrossRefGoogle Scholar
Coelho, J. F. S., Galbraith, H. & Topps, J. H. (1981). Animal Production 32, 261266.Google Scholar
Coward, B. J. & Buttery, P. J. (1982). Journal of Agricultural Science, Cambridge 98, 307316.Google Scholar
Dahlberg, E. (1982). Biochimica et Biophysica Acta 717, 6575.CrossRefGoogle Scholar
Donaldson, I. A., Hart, I. C. & Heitzman, R. J. (1981). Research in Veterinary Science 30, 713.CrossRefGoogle Scholar
Dubé, J. Y., Lesage, R. & Tremblay, R. R. (1976). Canadian Journal of Biochemistry 54, 5055.Google Scholar
Dumelow, N. W., Pearson, J. T., Essex, C. P. & Buttery, P. J. (1982). Proceedings of the Nutrition Society 41, 57A.Google Scholar
Faure, A. & Sutter-Dub, M.-Th. (1979). Journal of Physiology, Paris 75, 289295.Google Scholar
Garlick, P. J., Millward, D. J., James, W. P. T. & Waterlow, J. G. (1973). Biochemical Journal 136, 935945.Google Scholar
Goldberg, A. L. & Dice, J. F. (1974). Annual Reviews in Biochemistry 43, 835869.Google Scholar
Goldberg, A. L., Howell, E. M., Li, J. B., Martel, S. B. & Prouty, W. F. (1974). Federation Proceedings 33, 11121120.Google Scholar
Harris, C. I. & Milne, G. (1980). British Journal of Nutrition 44, 129140.Google Scholar
Heitzman, R. J. (1980). In Protein Deposition in Animals, pp. 193203 [Buttery, P. J. and Lindsay, D. B., editors]. London: Butterworths.CrossRefGoogle Scholar
Hoffman, B. (1980). In Protein Deposition in Animals, pp. 205214 [Buttery, P. J. and Lindsay, D. B., editors]. London: Butterworths.CrossRefGoogle Scholar
Jefferson, L. S., Li, J. B. & Rannels, M. B. (1977). Journal of Biological Chemistry 252, 14761483.Google Scholar
Kerr, S. E. & Seraidorian, K. (1945). Journal of Biological Chemistry 159, 211225.Google Scholar
Lobley, J., Smith, S., Mollison, G., Connell, A. & Galbraith, H. (1982). Proceedings of the Nutrition Society 41, 28A.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. C. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265275.CrossRefGoogle Scholar
Lunn, P. G., Whitehead, R. G. & Baker, B. A. (1976). British Journal of Nutrition 36, 219230.Google Scholar
Maund, B. A. (1976). Animal Production 22, 149.Google Scholar
Millward, D. J., Garlick, P. J., James, W. P. T., Nnanyelugo, D. O. & Ryatt, S. S. (1973). Nature 241, 204205.Google Scholar
Millward, D. J., Garlick, P. J., Nnanyelugo, D. O. & Waterlow, J. C. (1976). Biochemical Journal 156, 185188.Google Scholar
Millward, D. J., Garlick, P. J., Stewart, R. J. C., Nnanyelugo, D. O. & Waterlow, J. (1975). Biochemical Journal 150, 235243.Google Scholar
Moffit, P. E., Wilson, G. R. & Preston, R. L. (1975). Proceedings of the Society for Experimental Biology and Medicine 148, 650652.Google Scholar
Munro, H. N. & Fleck, A. (1969). In Mammalian Protein Metabolism, vol. 3, pp. 424525 [Munro, H. N., editor]. New York: Academic Press.Google Scholar
Peck, D. N. & Chesworth, J. M. (1977). Hormone and Metabolic Research 9, 531532.Google Scholar
Pottier, J., Cousty, C., Heitzman, R. J. & Reynold, I. P. (1981). Xenobiotica 11, 489500.CrossRefGoogle Scholar
Rannels, S. R. & Jefferson, L. S. (1980). American Journal of Physiology 238, E564E572.Google Scholar
Raymond, J. P., Ojasoo, T. & Labrie, F. (1981). In Mechanisms of Steroid Action, pp. 145157 [Lewis, G. P. and Ginsburg, M., editors]. London: Macmillan.Google Scholar
Schimke, R. T. (1970). In Mammalian Protein Metabolism, vol. 4, pp. 177228 [Munro, H. N., editor]. New York: Academic Press.Google Scholar
Snochowski, M., Dahlberg, E. & Gustafsson, J. A. (1980). European Journal of Biochemistry 111, 603616.CrossRefGoogle Scholar
Snochowski, M., Lundstrom, K., Dahlberg, E., Petersson, H. & Edquist, L. E. (1981 a). Journal of Animal Science 53, 8090.Google Scholar
Snochowski, M., Saartok, T., Dahlberg, E., Eriksson, E. & Gustafsson, J. A. (1981 b). Journal of Steroid Biochemistry 14, 765771.Google Scholar
Tao, R. C., Asplund, J. M. & Kappel, L. C. (1974). Journal of Nutrition 104, 16461656.Google Scholar
Umbreit, W. W., Burris, R. H. & Stauffer, J. F. (1972). Manometric and Biochemical Techniques, 5th ed. Minneapolis: Burgess Publishing Co.Google Scholar
Vernon, B. G. & Buttery, P. J. (1976). British Journal of Nutrition 36, 575579.Google Scholar
Vernon, B. G. & Buttery, P. J. (1978 a). British Journal of Nutrition 40, 563572.Google Scholar
Vernon, B. G. & Buttery, P. J. (1978 b). Animal Production 26, 19.Google Scholar
Vernon, B. G. & Buttery, P. J. (1981). Proceedings of the Nutrition Society 40, 13A.Google Scholar
Waterlow, J. L., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North-Holland.Google Scholar
Young, V. R. (1980). In Protein Deposition in Animals, pp. 167191 [Buttery, P. J. and Lindsay, D. B. editors]. London: Butterworths.Google Scholar