Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T07:36:52.591Z Has data issue: false hasContentIssue false

Erythrocytes, erythrocyte membranes, neutrophils and platelets as biopsy materials for the assessment of zinc status in humans

Published online by Cambridge University Press:  09 March 2007

Manuel Ruz
Affiliation:
Division of Applied Human Nutrition and Department of Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Kelley R. Cavan
Affiliation:
Division of Applied Human Nutrition and Department of Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
William J. Bettger
Affiliation:
Division of Applied Human Nutrition and Department of Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Rosalind S. Gibson
Affiliation:
Division of Applied Human Nutrition and Department of Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During a controlled zinc depletion-repletion study, fifteen men aged 25.3 (sd 3.3) years were fed on a low-Zn diet with high phytate:Zn and phytate × calcium: Zn molar ratios for 7 weeks, followed by a 2 week repletion period when 30 mg supplemental Zn/d was given. Changes in plasma, urine, and hair Zn concentrations, taste acuity, and cellular immune response confirmed the development of mild Zn deficiency. Zn concentrations in neutrophils, platelets, erythrocytes and erythrocyte membranes, mean platelet volume, and activities of alkaline phosphatse (EC 3.1.3.1) and α-d-mannosidase (EC 3.2.1.24) in neutrophils did not respond to changes in Zn status. In contrast, alkaline phosphatase activity in erythrocyte membranes showed a significant decline which was consistent in all subjects (nmol product formed/min per mg protein; baseline v. 7-week Zn depletion, 0.656 (sd 0.279) v. 0.506 (sd 0.230), at 7 weeks; P < 0.05); neutral phosphatase activity remained unchanged. Alkaline phosphatase activity in erythrocyte membranes may be a potential index of Zn status in humans

Type
Metabolic Effects of Altered Zinc Status
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Baer, M. T. & King, J. C. (1984). Tissue zinc levels and zinc excretion during experimental zinc depletion in young men. American Journal of Clinical Nutrition 39, 556570.Google Scholar
Baer, M. T., King, J. C., Tamura, T., Margen, S., Bradfield, R. B., Weston, W. L. & Daugherty, N. A. (1985). Nitrogen utilization, enzyme activity, glucose intolerance and leukocyte chemotaxis in human experimental zinc depletion. American Journal of Clinical Nutrition 41, 12201235.CrossRefGoogle ScholarPubMed
Ballester, O. F. & Prasad, A. S. (1983). Anergy, zinc deficiency, and decreased nucleoside phosphorylase activity in patients with sickle cell anemia. Annals of Internal Medicine 98, 180182.CrossRefGoogle ScholarPubMed
Bettger, W. J. & Taylor, C. G. (1986). Effects of copper and zinc status of rats on the concentration of copper and zinc in the erythrocyte membrane. Nutrition Research 6, 451457.Google Scholar
Buerk, C. A., Chandy, G., Pearson, E., MacAuly, M. S. & Soroff, H. S. (1973). Zinc deficiency: effect on healing and metabolism in man. Surgical Forum 24, 101103.Google Scholar
Clegg, M. S., Keen, C. L., Lonnerdal, B. & Hurley, L. (1988). Influence of ashing techiques on the analysis of trace elements in animal tissue. I. Wet ashing. Biological Trace Element Research 3, 105107.Google Scholar
De Chatelet, L. R. & Cooper, M. R. (1970). A modified procedure for the determination of leukocyte alkaline phosphatase. Biochemical Medicine 4, 6268.Google Scholar
Delaunay, J., Fischer, S., Torolero, M., Piau, J. P. & Schapira, G. (1978). Absence of any detectable activity of the membrane marker enzyme 5′-nucleotidase in human red blood cells. Biomedical Express 29, 173175.Google Scholar
Faber, C. N. & Glew, R. H. (1983). α-D-Mannosidase. In Methods of Enzymatic Analysis, 3rd ed., vol. 14, pp. 230240 [Bergmeyer, H. U., editor]. Weinheim: Verlag Chemie.Google Scholar
Galdes, A. & Hill, H. A. O. (1979). Metalloenzymes. In Inorganic Biochemistry, vol. 1, pp. 317335 [Hill, H. A. O., editor]. London: The Chemical Society.Google Scholar
Gordon, P. R. & O'Dell, B. L. (1980). Rat platelet aggregation impaired by short-term zinc deficiency. Journal of Nutrition 110, 21252129.Google Scholar
Gordon, P. R., Woodruff, C. W., Anderson, H. L. & O'Dell, B. L. (1982). Effect of acute zinc deprivation on plasma zinc and platelet aggregation in adult males. American Journal of Clinical Nutrition 35, 113119.Google Scholar
Health and Welfare (1990). The Report of the Scientific Review Committee, Nutrition Recommendations. Minister of Supply and Services Canada. Ottawa: Health and Welfare Canada.Google Scholar
Johanning, G. L. & O'Dell, B. L. (1988). Effect of zinc deficiency on erythrocyte (RBC) plasma enzyme activities. FASEB Journal 2, A636.Google Scholar
Johanning, G. L. & O'Dell, B. L. (1989). Effect of zinc deficiency and food restriction in rats on erythrocyte membrane zinc, phospholipid and protein content. Journal of Nutrition 119, 16541660.CrossRefGoogle ScholarPubMed
Johanning, G. L., Bobilya, D. J., Browning, J. D. & O'Dell, B. L. (1989) Effect of zinc status on protein, zinc and phospholipid composition of pig red cell (RBC) membranes. FASEB Journal 3, A457 Abstr.Google Scholar
Johanning, G. L., Miller, D. S. & O'Dell, B. L. (1988). Effect of zinc deficiency on lipid and protein profiles of the erythrocyte membrane. In Trace Elements in Man and Animals 6, pp. 363364 [Hurley, L. S.,Keen, C. L., Lonnerdal, B. and Rucker, R. B., editors]. New York: Plenum Press.Google Scholar
McWilliams, P. L., Agarwal, R. P. & Henkin, R. I. (1983). Zinc concentration in erythocyte membranes in normal volunteers and in patients with taste and smell dysfunction. Biological Trace Element Research 5, 18.CrossRefGoogle Scholar
Markwell, M. A., Hass, S. M., Bieber, L. L. & Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry 87, 206210.CrossRefGoogle ScholarPubMed
Meadows, N. J., Ruse, W., Smith, M. F., Day, J., Keeling, P. W. N., Scopes, J. W., Thompson, R. P. H. & Bloxam, D. L. (1981). Zinc and small babies. Lancet ii, 11351137.CrossRefGoogle Scholar
Milne, D. B., Canfield, W. K., Gallagher, S. K., Hunt, J. R. & Klevay, L. M. (1987). Ethanol metabolism in postmenopausal women fed a diet marginal in zinc. American Journal of Clinical Nutrition 46, 688693.CrossRefGoogle ScholarPubMed
Milne, D. B., Ralston, N. V. C. & Wallwork, J. C. (1985 a). Zinc content of cellular components of blood: methods for cell separation and analysis evaluated. Clinical Chemistry 31, 6569.CrossRefGoogle ScholarPubMed
Milne, D. B., Ralston, N. V. C. & Wallwork, J. C. (1985 b). Zinc content of blood cellular components and lymph node and spleen lymphocytes in severely zinc-deficient rats. Journal of Nutrition 115, 10731078.Google Scholar
Nishi, Y. (1980). Zinc levels in plasma, erythrocytes, and leukocytes in healthy children and adults. Hiroshima Journal of Medical Sciences 29, 713.Google Scholar
Pai, L. H. & Prasad, A. S. (1988). Cellular zinc in patients with diabetes mellitus. Nutrition Research 8, 889897.CrossRefGoogle Scholar
Prasad, A. S. (1985 a). Clinical manifestations of zinc deficiency. Annual Review of Nutrition 5, 341363.Google Scholar
Prasad, A. S. (1985 b). Laboratory diagnosis of zinc deficiency. Journal of the American College of Nutrition 4, 591598.Google Scholar
Prasad, A. S. & Cossack, Z. T. (1982). Neutrophil zinc: an indicator of zinc status in man. Transactions of the Association of American Physicians 95, 165176.Google Scholar
Prasad, A. S. & Cossack, Z. T. (1984). Zinc supplementation and growth in sickle cell disease. Annals of Internal Medicine 100, 367371.CrossRefGoogle ScholarPubMed
Prasad, A. S., Rabbani, P., Abbasi, A., Bowersox, E. & Fox, M. R. S. (1978). Experimental zinc deficiency in humans. Annals of Internal Medicine 89, 483490.Google Scholar
Rabbani, P. I., Prasad, A. S., Tsai, R., Harland, B. F. & Spivey Fox, M. R. (1987). Dietary model for production of experimental zinc deficiency in man. American Journal of Clinical Nutrition 45, 15141525.Google Scholar
Ralston, N. V. C. & Milne, D. B. (1988). Reduced platelet size in zinc deficiency: implications in assays of conditions associated with zinc deficiency. FASEB Journal 2, A867 Abstr.Google Scholar
Ruz, M., Cavan, K. R., Bettger, W. J., Thompson, L. U., Berry, M. & Gibson, R. S. (1991). Development of a dietary model for the study of marginal zinc deficiency in humans. Evaluation of some biochemical and functional indices of zinc status. American Journal of Clinical Nutrition 53, 19.Google Scholar
Schiliro, G., Russo, A., Azzia, N., Russo Mancusso, G., Di Gregorio, F., Romeo, M. A., Fallico, R. & Sciacca, S. (1987). Leukocyte alkaline phosphatase (LAP). A useful marker of zinc status in β-thalassemic patients. American Journal of Pediatric Hematology Oncology 9, 149152.CrossRefGoogle Scholar
Shrader, R. E. & Hurley, L. S. (1972). Enzyme histochemistry of peripheral blood and bone marrow in zinc-deficient rats. Journal of Laboratory Investigation. 20, 566571.Google Scholar
Simmons, A. (1989). Hematology. A Combined Theoretical and Technical Approach. Philadelphia: W. B. Saunders.Google Scholar
Snaith, S. M. (1977). Mutiple α-mannosidase activities in mammalian tissues are shown by metal-ion activation. Biochemical Journal 163, 557564.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1980). Stastical Methods, 7th ed. Ames, IA: The Iowa State University Press.Google Scholar
Solomons, N. W. (1979). On the assessment of zinc and copper nutriture in man. American Journal of Clinical Nutrition 32, 856871.Google Scholar
SPSS, Inc. (1986). SPSSx User's Guide, 2nd ed. New York, NY: McGraw-Hill Book Co.Google Scholar
Steck, T. L., Weinstein, R. S., Straus, J. H. & Wallach, D. F. H. (1970). Inside-out red cell membrane vesicles: preparation and purification. Science 168, 255257.CrossRefGoogle ScholarPubMed
Whitehouse, R. C., Prasad, A. S., Rabbani, P. I. & Cossack, Z. T. (1982). Zinc in plasma, neutrophils, lymphocytes, and erythrocytes as determined by flameless atomic absorption spectrophotometry. Clinical Chemistry 28, 475480.Google Scholar
Wintrobe, M. M., Lee, G. R., Boggs, D. R., Bithell, T. C., Foerster, J., Athens, J. W. & Lukens, J. N. (editors) (1981). Clinical Hematology, 8th ed. Philadelphia: Lea and Febiger.Google Scholar