Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T07:22:46.007Z Has data issue: false hasContentIssue false

Estimation of tissue protein synthesis in sheep during sustained elevation of plasma leucine concentration by intravenous infusion

Published online by Cambridge University Press:  09 March 2007

A. L. Schaefer
Affiliation:
New Zealand Ministry of Agriculture and Fisheries Research Division, Ruakura Agricultural Research Centre, Hanzilron, New Zealand
S. R. Davis
Affiliation:
New Zealand Ministry of Agriculture and Fisheries Research Division, Ruakura Agricultural Research Centre, Hanzilron, New Zealand
G. A. Hughson
Affiliation:
New Zealand Ministry of Agriculture and Fisheries Research Division, Ruakura Agricultural Research Centre, Hanzilron, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The fractional rate of protein synthesis (FSR) was determined in skeletal muscle, liver, rumen and cardiac muscle of wether sheep by continuous intravenous infusion of L–[4,5–3H]leucine accompanied by infusion of 0, 7.6, 15.2 or 22.8 mmol leucine/h (three sheep per treatment). FSR was calculated assuming plasma (ksp) or intracellular (ksi) leucine-specific radioactivity (SRA) was representative of the leucine precursor pool SRA for protein synthesis.

2. Plasma leucine concentration (plateau) was linearly related to leucine infusion rate, 22.8 mmol/h evoking tenfold increase in plasma concentration.

3. Difference between plasma leucine SRA and intracellular leucine SRA in all tissues diminished as plasma leucine concentration increased.

4. There were significant differences between ksi and kap estimates for liver and rumen in control sheep.

5. As leucine infusion rate increased, differences between kri and kag, diminished in all tissues. With increasing leucine infusion, in liver kst decreased and ksp was increased, in rumen kge decreased and ksp was stable, while in cardiac and skeletal muscle ksi and ksp both increased.

6. At a leucine infusion rate of 22.8 mmol/h, mean kap, and kst respectively were: rumen 1 1 (SE 2), 13 (SE 1); liver 19 (SE 2), 21 (SE 2); cardiac muscle 3–6 (SE 0.4), 3.8 (SE 0.3); skeletal muscle 4.1 (SE 0.2), 4.5 (SE 0.5) and did not differ significantly in any tissue.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Airhart, J., Vidrich, A. & Khairallah, E. A. (1974). Biochemical Journal 140, 539548.CrossRefGoogle Scholar
Benson, J. R. & Hare, P. E. (1975). Proceedings of the National Academy of Sciences, USA 72, 619622.CrossRefGoogle Scholar
Block, K. P. & Harper, A. E. (1984). Metabolism 33, 559566.CrossRefGoogle ScholarPubMed
Buse, M. G., Cheema, I. R., Owens, M., Ledford, B. E. & Galbraith, R. A. (1984). American Journal of Physiology 246, E510E515.Google Scholar
Buse, M. G. & Weigand, D. A. (1977). Biochimica et Biophysica Acta 475, 8189.CrossRefGoogle Scholar
Chang Hong, S. O. & Layman, D. K. (1984). Journal of Nutrition 114, 12041212.CrossRefGoogle Scholar
Chua, B., Siehl, D. L. & Morgan, H. E. (1979). Journal of Biological Chemistry 254, 83588362.CrossRefGoogle Scholar
Davis, S. R., Barry, T. N. & Hughson, G. A. (1981). British Journal of Nutrition 46, 409415.CrossRefGoogle Scholar
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). Biochemical Journal 192, 719723.CrossRefGoogle Scholar
Garlick, P. J., Millward, D. J. & James, W. P. T. (1973). Biochemical Journal 136, 935945.CrossRefGoogle Scholar
Harper, A. E. & Benjamin, E. (1984). Journal of Nutrition 114, 431440.CrossRefGoogle Scholar
Khairallah, E. A. & Mortimore, G. E. (1976). Journal of Biological Chemistry 251, 13751384.CrossRefGoogle Scholar
McKee, E. E., Cheung, J. Y., Rannels, D. E. & Morgan, H. E. (1978). Journal of Biological Chemistry 253, 10301040.CrossRefGoogle Scholar
McNurlan, M. A., Fern, E. B. & Garlick, P. J. (1982). Biochemical Journal 204, 831837.CrossRefGoogle Scholar
McNurlan, M. A., Tomkins, A. M. & Garlick, P. J. (1979). Biochemical Journal 178, 373379.CrossRefGoogle Scholar
Mortimore, G. E., Woodside, K. H. & Henry, J. E. (1972). Journal of Biological Chemistry 247, 27762784.Google Scholar
Rannels, D. E., Hjalmarson, A. C. & Morgan, H. E. (1974). American Journal of Physiology 226, 528539.Google Scholar
Schneible, P. A., Airhart, J. & Low, R. B. (1981). Journal of Biological Chemistry 256, 48884894.Google Scholar
Sherwin, R. S. (1978). Journal of Clinical Investigations 61, 14711481.CrossRefGoogle Scholar
Taylor, S. J., Cole, D. J. A. & Lewis, D. (1984). Animal Production 38, 257261.Google Scholar
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: Elsevier North Holland.Google Scholar
Wijayasinghe, M. S., Thompson, J. R. & Milligan, L. P. (1984). Canadian Journal of Animal Science 64 Suppl., 283284.CrossRefGoogle Scholar
Zapalowski, C., Millar, R. H., Dixon, J. L. & Harper, A. E. (1984). Metabolism 33, 922927.CrossRefGoogle ScholarPubMed