Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T04:54:09.358Z Has data issue: false hasContentIssue false

Excretion of endogenous and exogenous purine derivatives in sheep: effect of increased concentrate intake

Published online by Cambridge University Press:  09 March 2007

J. F. Pérez
Affiliation:
Departamento Producción Animal y Ciencia de los Alimentos Biología Molecular y Celular, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain
J. Balcells*
Affiliation:
Departamento Producción Animal y Ciencia de los Alimentos Biología Molecular y Celular, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain
J. A. Cebrián
Affiliation:
Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain
S. M. Martín-Orúe
Affiliation:
Departamento Producción Animal y Ciencia de los Alimentos Biología Molecular y Celular, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain
*
*Corresponding author:Dr J. Balcells, fax +34 976 76 15 90, email balcells@posta.unizar.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present study examined the endogenous urinary excretion of purine derivatives (PD; allantoin, uric acid and xanthine plus hypoxanthine) in fed animals. Four Rasa Aragonesa ewes fitted with simple cannulas in the rumen and proximal duodenum were used. Animals were given a lucerne (Medicago sativa) hay diet, as sole feed (A) or supplemented, respectively, with 220 (B), 400 (C), and 550 (D) g rolled barley grain/d following a 4 × 4 random factorial design. Duodenal flow of purine bases (PB) was determined by the dual-phase marker system. 15N was infused continuously into the rumen to label exogenous or microbial PB. Duodenal PB flow and urinary excretion of PD increased with digestible organic matter intake showing a constant recovery of duodenal PB. The isotope dilution of PD in urine samples confirmed the presence of an endogenous fraction, originating from tissues, that increased from 115.2 (SE 5.84) μmol/kg W0.75 for the basal diet to 304.2 (SE 7.6) μmol/kg W0.75 at the highest level of duodenal PB.

Type
Short Communication
Copyright
Copyright © The Nutrition Society 1998

References

Aharoni, Y & Tagari, H (1991) Use of nitrogen-15 determinations of purine nitrogen fraction of digesta to define nitrogen metabolism traits in the rumen. Journal of Dairy Science 74, 25402547.CrossRefGoogle ScholarPubMed
Balcells, J, Guada, JA, Castrillo, C & Gasa, J (1991) Urinary excretion of allantoin and allantoin precursors by sheep after different rates of purine infusion into the duodenum. Journal of Agricultural Science, Cambridge 116, 309317.CrossRefGoogle Scholar
Balcells, J, Guada, JA, Peiró, JM & Parker, DS (1992) Simultaneous determination of allantoin and oxypurines in biological fluids by high-performance liquid chromatography. Journal of Chromatography 575, 153157.CrossRefGoogle ScholarPubMed
Broderick, GA & Merchen, NR (1992) Markers for quantifying microbial protein synthesis in the rumen. Journal of Dairy Science 75, 26182632.CrossRefGoogle ScholarPubMed
Chen, XB, Hovell, FDDeB, Ørskov, ER & Brown, DS (1990) Excretion of purine derivatives by ruminants: effect of exogenous nucleic acid supply on purine derivative excretion by sheep. British Journal of Nutrition 63, 131142.CrossRefGoogle ScholarPubMed
Giesecke, D, Stangassinger, M & Tiemeyer, W (1984) Nucleic acid digestion and urinary purine metabolites in sheep nourished by intragastric infusion. Canadian Journal of Animal Science 64, 144145.CrossRefGoogle Scholar
Guernesey, DL & Edelman, JS (1983) Regulation of thermogenesis by thyroid hormones. In Molecular Basis of Thyroid Hormone Action, pp. 293324 [Hoppenheimer, J and Samuels, HH, editors]. New York: Academic Press.CrossRefGoogle Scholar
Pérez, JF, Balcells, J, Guada, JA & Castrillo, C (1996) Determination of rumen microbial-nitrogen production in sheep: a comparison of urinary purine excretion with methods using 15N and purine bases as markers of microbial-nitrogen entering the duodenum. British Journal of Nutrition 75, 699709.Google ScholarPubMed
Razzaque, MA, Topps, JH, Kay, RNB & Brockway, JM (1981) Metabolism of the nucleic acids of rumen bacteria by preruminant and ruminant lambs. British Journal of Nutrition 45, 517527.CrossRefGoogle ScholarPubMed
Sonoda, T & Tatibana, M (1978) Metabolic fate of pyrimidines and purines in dietary nucleic acids ingested by mice. Biochimica et Biophysica Acta 521, 5566.CrossRefGoogle ScholarPubMed
Young, EG & Conway, CF (1942) On the estimation of allantoin by the Rimini-Schryver reaction. Journal of Biological Chemistry 142, 839853.CrossRefGoogle Scholar