Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T20:41:51.876Z Has data issue: false hasContentIssue false

Fermentation and nitrogen dynamics in Merino sheep given a low-quality-roughage diet

Published online by Cambridge University Press:  09 March 2007

J. V. Nolan
Affiliation:
Department of Biochemistry and Nutrition, Faculty of Rural Science, University of New England, Armidale, NS W 2351, Australia
S. Stachiw
Affiliation:
Department of Biochemistry and Nutrition, Faculty of Rural Science, University of New England, Armidale, NS W 2351, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Fermentation in the rumen and nitrogen dynamics in the body were studied in mature Merino sheep given a maintenance ration of a low-quality-roughage diet containing mainly chopped wheat straw.

2. Intake of metabolizable energy was 3.49 MJ/d and of total N 6.2 g/d.

3. From measurements of volatile fatty acid (VFA) production rates and stoichiometric principles, it was calculated that 75% of the digestible organic matter intake was fermented in the rumen, making an estimated 44 g/68d microbial dry matter available to the animal.

4. The total flux of ammonia through the rumen NH3 pool, estimated by 15NH3 dilution methods, was 8.2 g N/d of which 3.5 g N/d was irreversibly lost; thus 4.7 g N/d was recycled, partly within the rumen (approximately 3.8 g N/d) and partly via endogenous secretions (approximately 0.9 g N/d). The extensive recycling of NH3-N within the rumen indicated that turnover of microbial N was considerable, and the total production of micro-organisms was at least twice the net outflow.

5. The proportion of the N in rumen bacteria derived from rumen ammonia was 62% and thus 38% was derived from other nitrogenous compounds such as peptides and amino acids.

6. The rates of transfer of blood urea into the rumen, estimated from the appearance of 14CO2 or 15NH3 in the rumen after intravenous single injections of [14C]-and [15N]urea, did not differ significantly and the mean transfer was 2.3 urea-N/d.

7. Estimates of the rate of irreversible loss of urea-C (i.e. urea synthesis in the body) were obtained by analysis of samples of either blood or urine obtained after a single, intravenous injection of [14C]urea. The two methods gave results that did not differ significantly. The estimated rate of urea synthesis in the body was 5.3 g N/d. Urea excretion rate was relatively low, i.e. 1.2 g N/d, and thus transfer of urea to the digestive tract was approximately 4.1 g N/d. Approximately 53% of the latter was transferred to the rumen, and 47% to the rest of the digestive tract. These results are discussed in relation to similar studies with sheep given other diets.

8. Various aspects of isotope-tracer methods and the errors that could occur in this type of study are discussed.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Agricultural Research Council (1965). The Nutrient Requirements of Farm Livestock, No. 2, Ruminants. London: Agricultural Research Council.Google Scholar
Allen, S. & Miller, E. L. (1976). Br. J. Nutr. 36, 353.Google Scholar
Annison, E. F. (1954). Biochem. J. 57, 400.Google Scholar
Association of Official Agricultural Chemists (1975). Official Methods of Analysis, 12th ed. Washington, DC: Association of Official Agricultural Chemists.Google Scholar
Baldwin, R. L., Koong, L. J. & Ulyatt, M. J. (1977). Agric. Systems 2, 255.CrossRefGoogle Scholar
Boďa, K. & Havassy, L. (1974). In Tracer Studies on Non-Protein-Nitrogen for Ruminants. II, p. 99. Vienna: Int. Atomic Energy Agency.Google Scholar
Chalmers, M. I., Grant, I. & White, F. (1976). In Protein Metabolism and Nutrition, p. 159, [Cole, D. J.Boorman, A. K. N., Buttery, P. J.Lewis, D., Neale, R. J. and Swan, H., editors]. European Association for Animal Production No. 16. London: Buttenvorths.Google Scholar
Cocimano, M. R. & Leng, R. A. (1967). Br. J. Nutr. 21, 353.CrossRefGoogle Scholar
Decker, P., Gartner, K., Hornicke, H. & Hill, H. (1961). Pflügers Arch. ges. Physiol. 274, 289.CrossRefGoogle Scholar
Dobson, A., Sellars, A. F., Thorlacius, S. O. (1971). Am. J. Physiol. 220, 1337.CrossRefGoogle Scholar
Downes, A. M. & McDonald, I. W. (1964). Br. J. Nutr. 18, 153.Google Scholar
Elliot, R. & Little, D. A. (1977). Aust. J. biol. Sci. 30, 203.Google Scholar
Engelhardt, W. v. & Hinderer, S. (1976). In Tracer Studies on Non-Protein Nitrogen for Ruminants. III, p. 57. Vienna: Int. Atomic Energy Agency.Google Scholar
Engelhardt, W. v. & Nickel, W. (1965). Pflügers Arch. ges. Physiol. 286, 57.Google Scholar
Erwin, E. S., Marco, G. J. & Emery, E. M. (1961). J. Dairy Sci. 4, 1768.CrossRefGoogle Scholar
Ford, A. L. & Milligan, L. P. (1970). Can. J. Anim. Sci. 50, 129.CrossRefGoogle Scholar
Gartner, K. (1962). Pflügers Arch. ges. Physiol. 276, 292.Google Scholar
Gillette, D. D. (1967). Am J. Physiol. 213, 271.CrossRefGoogle Scholar
Helmer, L. G. & Bartley, E. E. (1971). J. Dairy Sci. 54, 25.Google Scholar
Hinderer, S. & Engelhardt, W. v. (1976). In Tracer Studies on Non-Protein Nitrogen for Ruminants. III, p. 59. Vienna: Int. Atomic Energy Agency.Google Scholar
Houpt, T. R. (1957). Physiologist, Wash. 1, 43.Google Scholar
Houpt, T. R. (1970). In The Physiology of Digestion and Metabolism in the Ruminant. [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Judson, G. J., Abelsamie, R. & Bird, R. B. (1975). Ausr. J. agric. Res. 26, 743.CrossRefGoogle Scholar
Juhász, B. (1965). Acta vet. hung. 15, 25.Google Scholar
Kempton, T. J. & Leng, R. A. (1979). Br. J. Nutr. (In the Press).Google Scholar
Kennedy, P. M. & Milligan, L. P. (1978). Br. J. Nutr. 40, 149.CrossRefGoogle Scholar
Leng, R. A. (1973). In Chemistry and Biochemistry of Herbage, vol. 3, p. 107 [Bailey, R. W. and Butler, G. W., editors]. New York: Academic Press.Google Scholar
Leng, R. A. & Leonard, G. J. (1965). Br. J. Nutr. 19, 469.CrossRefGoogle Scholar
Leng, R. A. & Murray, R. N. (1972). In Tracer Studies on Non-Protein Nitrogen for Ruminants. I, p. 25Vienna: Int. Atomic Energy Agency.Google Scholar
MacRae, J. C., Wilson, S., Milne, J. A. & Spence, M. (1977). Proc. Nutr. Soc. 36, 77A.Google Scholar
Marsh, W. H., Fingerhut, B. & Kirsch, E. (1957). Am. J. clin. Path. 28, 681.CrossRefGoogle Scholar
Mazanov, A. & Nolan, J. V. (1976). Br. J. Nutr. 35. 149.CrossRefGoogle Scholar
Murray, R. M., Byrant, A. M. & Leng, R. A. (1976). Br. J. Nutr. 36, 1.CrossRefGoogle Scholar
Nolan, J. V. (1975). In Digestion and Metabolism in the Ruminant. [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, Australia: University of New England Publishing Unit.Google Scholar
Nolan, J. V. & Leng, R. A. (1972). Br. J. Nutr. 27, 177.CrossRefGoogle Scholar
Nolan, J. V. & Leng, R. A. (1974). Proc. Nutr. Soc. 33, 1.Google Scholar
Nolan, J. V., Norton, B. W. & Leng, R. A. (1976). Br. J. Nutr. 35, 127.CrossRefGoogle Scholar
Nolan, J. V. & Rowe, J. B. (1976). In Reveiws in Rural Science. IIp. 151. [Sutherland, T. M., McWilliam, J. R., and Leng, R. A., editors]. Armidale, Australia: University of New England Publishing Unit.Google Scholar
Norton, B. W., Murray, R. M., Entwistle, K. W., Nolan, J. V., Ball. F. M. & Leng, R. A. (1978). Ausr. J. agric. Res. 29, 595.Google Scholar
Potthast, V., Prigge, H. & Pfeffer, E. (1977). Z. Tierphysiol Tierernahr. Furrermitrelkd. 38, 338 (abstract).Google Scholar
Raabe, R. (1968). Lab Pracf. 17, 217.Google Scholar
Roy, J. H. B., Balch, C. C., Miller, E. K., Ørskov, E. R. & Smith, R. H. (1977). Publs. Eur. Ass. Anim Prod. no. 19.Google Scholar
Satter, L. D. & Slyter, L. L. (1974). Br. J. Nutr. 32, 199.CrossRefGoogle Scholar
Simonnet, H., Le Bars, H., Molle, J. (1957). C. V. hebd. Seanc. Acad. Sci., Paris, 244, 943,Google Scholar
Thorlacius, S. O., Dobson, A. & Sellars, A. F. (1971). Am. J. Physiol. 220, 162.Google Scholar
Thornton, R. F. (1970). Aust. J. agric. Res. 21, 323.CrossRefGoogle Scholar
Ulyatt, M. J., Dellow, D. W., Reid, C. S. W. & Bauchop, T. (1975). In Digestion and Metabolism in the Ruminant [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, Australia: University of New England Publishing Unit.Google Scholar
Váirady, J., Boďa, K., Havassy, I., Bajo, M. & Tomas, J. (1967). Physiol. bohemuslav, 16, 571.Google Scholar
Weller, R. A., Gray, F. V., Pilgrim, A. F. & Jones, G. B. (1967). Aust. J. agric. Res. 18, 107.CrossRefGoogle Scholar
White, R. G., Steel, J. W., Leng, R. A. & Luick, J. R. (1969). Biochem. J. 114, 203.CrossRefGoogle Scholar