Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T06:30:17.617Z Has data issue: false hasContentIssue false

Fermentation of wheat bran and gum arabic in rats fed on an elemental diet

Published online by Cambridge University Press:  09 March 2007

D. J. Walter
Affiliation:
Wolfson Laboratories, Gastrointestinal Unit, Department of Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU
M. A. Eastwood
Affiliation:
Wolfson Laboratories, Gastrointestinal Unit, Department of Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU
W. G. Brydon
Affiliation:
Wolfson Laboratories, Gastrointestinal Unit, Department of Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU
R. A. Elton
Affiliation:
Medical Statistics Unit, Faculty of Medicine, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Gum arabic and wheat bran were added to an elemental diet (100 g/kg) in order to study their metabolism in the caeca of adult male albino Wistar rats.

2. Dry stool weight (g/d) over 12 weeks was 0.70 (SE 0.05) on the elemental control diet. Wheat bran increased mean dry stool weight to 1.09 (SE 0.08), an increase of 56 %. There was no significant difference between faecal weights (0.65 (SE 0.08)) of the gum-arabic-supplemented group and the unsupplemented group.

3. Wet caecal-sac weight, dry caecal-contents weight, and faecal and caecal bacterial mass (measured by 2,6-diaminopimelic acid) all increased significantly with the gum-arabic-supplemented diet but not with the wheatbran-supplemented diet.

4. Total short-chain fatty acids (mostly acetate) increased in the caecum and faeces with the gum-arabic-supplemented diet but not with the wheat-bran-supplemented diet.

5. Breath hydrogen and methane production decreased to negligible amounts over the 12 weeks of the experiment.

Type
Clinical and Human Nutrition papers: Studies Relevant to Human Nutrition
Copyright
Copyright © The Nutrition Society 1988

References

Cummings, J. H., Southgate, D. A. T., Branch, W., Houston, H., Jenkins, D. J. A. & James, W. (1978). Lancet i, 59.CrossRefGoogle Scholar
Czerkawski, J. W. (1974). Journal of the Science of Food and Agriculture 25, 4555.CrossRefGoogle Scholar
Eastwood, M. A., Kirkpatrick, R., Mitchell, W. D., Bone, A. & Hamilton, T. (1973). British Medical Journal iv, 392394.CrossRefGoogle Scholar
Eastwood, M. A. & Mitchell, W. D. (1976). In Fibre in Human Nutrition, pp. 109129 [Spiller, G.A. and Amen, R. J., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Elsenhans, B., Blume, R. & Caspary, W. F. (1981). American Journal of Nutrition 34, 18371848.Google Scholar
Kay, R. M. & Truswell, A. S. (1977). American Journal of Clinical Nutrition 30, 171175.CrossRefGoogle Scholar
Leegwater, D. C., de Groot, A. P. & Van Kalmthout-Kuyper, M. (1974). Food and Cosmetics Toxicology 12, 687697.CrossRefGoogle Scholar
McKay, L. F. (1981). A study of breath methane excretion. PhD Thesis, University of Edinburgh.Google Scholar
McLean Ross, A. H., Brydon, W. G., Eastwood, M. A., Anderson, J. R. & Anderson, D. M. W. (1983). American Journal of Clinical Nutrition 37, 368375.CrossRefGoogle Scholar
Nyman, M. & Asp, N. G. (1982). British Journal of Nutrition 47, 357366.CrossRefGoogle Scholar
Nyman, M., Asp, N. G., Cummings, J. & Wiggins, H. (1986). British Journal of Nutrition 55, 487496.CrossRefGoogle Scholar
Rodkey, F. L., Collinson, H. A. & O'Neal, J. D. (1972). Journal of Applied Physiology 33, 256260.CrossRefGoogle Scholar
Russell, R. I. (1985). Proceedings of the Nutrition Society 44, 8793.CrossRefGoogle Scholar
Spiller, G. A., Chernoff, M. C., Hill, R. A., Gates, J. E., Nassar, J. H. & Shipley, E. A. (1980). American Journal of Clinical Nutrition 33, 754759.CrossRefGoogle Scholar
Stephen, A. M., Haddad, A. C. & Phillips, S. F. (1983). Gastroenterology 85, 589596.CrossRefGoogle Scholar
Tadesse, K., Smith, A., Brydon, W. G. & Eastwood, M. A. (1979). Journal of Chromatography 171, 416418.CrossRefGoogle Scholar
Walter, D. J. (1985). Fibre metabolism in the rat. PhD Thesis, University of Edinburgh.Google Scholar
Walter, D. J., Eastwood, M. A., Brydon, W. G. & Elton, R. A. (1986). British Journal of Nutrition 55, 465479.CrossRefGoogle Scholar
Williams, R. D. & Olmsted, W. G. (1936 a). Journal of Nutrition 11, 433449.CrossRefGoogle Scholar
Williams, R. D. & Olmsted, W. G. (1936 b). Annals of Internal Medicine 10, 717727.Google Scholar
Winitz, M., Adams, R. F., Seedman, D. A., Davis, P. N., Jayko, L. G. & Hamilton, J. A. (1970). American Journal of Clinical Nutrition 23, 546559.CrossRefGoogle Scholar
Wise, A., Mallett, A. K. & Rowland, I. R. (1986). Toxicology 38, 241248.CrossRefGoogle Scholar
Work, E. & Dewey, D. L. (1953). Journal of General Microbiology 9, 394409.CrossRefGoogle Scholar