Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T13:25:33.317Z Has data issue: false hasContentIssue false

Foetal and maternal rates of urea production and disposal in well-nourished and undernourished sheep

Published online by Cambridge University Press:  09 March 2007

J. C. Hodgson
Affiliation:
Moredun Research Institute, 408 Gilmerton Road, Edinburgh EH17 7JH, Scotland
D. J. Mellor
Affiliation:
Moredun Research Institute, 408 Gilmerton Road, Edinburgh EH17 7JH, Scotland
A. C. Field
Affiliation:
Moredun Research Institute, 408 Gilmerton Road, Edinburgh EH17 7JH, Scotland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Five monotocous and twoditocous Scottish Blackface ewes with indwelling catheters in an umbilical artery and vein of one foetus only and in both maternal jugular veins were used.

2. Experiments were conducted over a period of 2 d when [I4C]urea was infused intravenously over 9 h into either the mother or foetus, separate days being used for each infusion. Two series of experiments were completed, one in well-nourished and the other in undernourished sheep at 125–141) and 138–143 d of gestation respectively.

3. Plasma urea specific radioactivities of the mother and infused foetus at plateau were used to determine the urea flux-rates within and between mother and foetus. The mean rate of foetal urea production (Ffo) was 1.45 and 1.63 mg/min per kg foetus in well-nourished and undernourished ewes respectively. The corresponding rates of maternal urea production (Fmo) were 0.49 and 0.37 mg/min per kg live weight respectively and there was a close correlation between the rate of maternal urea disposal (Fom) and the dietary nitrogen intake.

4. The values of Ffo were used to calculate the maximum potential for foetal gluconeogenesis from deaminated amino acids. These calculations were compared with published information on the over-all rates of foetal gluconeo genesis in well-nourished ewes.

5. The foetal entry rate of urea expressed on a body-weight basis was high, approximately 8.5 times that of the mother, but it was a threefold overestimate of Ffo. The maternal entry rate was 1.3 times Fmo and the significance of this in relation to assessing differences in urea entry rates in pregnant and non-pregnant sheep is discussed.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

REFERENCES

Battaglia, F. C. & Meschia, G. (1973). In Barcroft's Centenary Symposium on Foetal and Neonatal Physiology, p. 382. London: Cambridge University Press.Google Scholar
Bruckental, I., Oldham, J. D. & Sutton, J. D. (1980). Br. J. Nutr. 44, 33.CrossRefGoogle Scholar
Faichney, G. J. & White, G. A. (1980). Proc. Nutr. Soc. Aust. 5, 211.Google Scholar
Fawcett, J. K. & Scott, J. E. (1960). J. clin. Path. 13, 156.CrossRefGoogle Scholar
Gresham, E. L., James, E. J., Raye, J. R., Battaglia, F. C., Makowski, E. L. & Meschia, G. (1972). Pediatrics, Springfield 50, 372.CrossRefGoogle Scholar
Hodgson, J. C. & Mellor, D. J. (1977). Proc. Nutr. Soc. 36, 33.CrossRefGoogle Scholar
Hodgson, J. C., Mellor, D. J. & Field, A. C. (1980). Biochem. J. 186, 739.CrossRefGoogle Scholar
Hodgson, J. C., Mellor, D. J. & Field, A. C. (1981). Biochem. J. 196, 179.CrossRefGoogle Scholar
Holzman, I. R., Lemons, J. A., Meschia, G. & Battaglia, F. C. (1977). Proc. Soc. exp. Biol. Med. 156, 27.CrossRefGoogle Scholar
Holzman, I. R., Lemons, J. A., Meshia, G. & Battaglia, F. C. (1979). J. devel. Physiol. 1, 137.Google Scholar
James, E. J., Raye, J. R., Gresham, E. L., Makowski, E. L., Meschia, G. & Battaglia, F. C. (1972). Pediatrics, Springfield 50, 361.CrossRefGoogle Scholar
Lemons, J. A., Adcock, E. W. III, Jones, M. D. Jr.Naughton, M. A., Meschia, G. & Battaglia, F. C. (1976). J. clin. Invest. 58, 1428.CrossRefGoogle Scholar
Lindsay, D. B. (1978). Biochem. Soc. Trans. 6, 1152.CrossRefGoogle Scholar
Mellor, D. J. & Matheson, I. C. (1979). Q. Jl exp. Physiol. 64, 119.CrossRefGoogle Scholar
Mellor, D. J. & Murray, L. (1981). Res. vet. Sci. 30, 198.CrossRefGoogle Scholar
Mellor, D. J. & Murray, L. (1982). Res. vet. Sci. (In the Press).Google Scholar
Meschia, G., Battaglia, F. C. & Bruns, P. D. (1967). J. appl. Physiol. 22, 1171.CrossRefGoogle Scholar
Nolan, J. V. & Leng, R. A. (1970). Br. J. Nutr. 24, 905.CrossRefGoogle Scholar
Prior, R. L. (1980). Am. J. Physiol. 239, E208.Google Scholar
Prior, R. L. & Christenson, R. K. (1977). Am. J. Physiol. 233, E462.Google Scholar
Rattenbury, J. M., Jeacock, M. K. & Shepherd, D. A. L. (1980). Biochim. biophys. Acta 630, 210.CrossRefGoogle Scholar
Schreiner, R. L., Burd, L. I., Jones, M. D. Jr.Lemons, J. A., Sheldon, R. E., Simmons, M. A., Battaglia, F. C. & Meschia, G. (1978). In Fetal and Newborn Cardiovascular Physiology, vol. 2, p. 197 [Longo, L. G. and Reneau, D. D., editors]. New York and London: Garland STPM Press.Google Scholar
Shipley, R. A. & Clark, R. E. (1972). Tracer Methods for In Vivo Kinetics: Theory and Applications. New York and London: Academic Press.Google Scholar
Simmons, M. A., Meschia, G., Makowski, E. L. & Battaglia, F. C. (1974). Pediat. Res. 8, 830.CrossRefGoogle Scholar
Somogyi, M. (1945). J. biol. Chem. 160, 69.CrossRefGoogle Scholar
Trinder, P. (1969). Ann. clin. Biochem. 6, 24.CrossRefGoogle Scholar
Wainman, F. W., Blaxter, K. L. & Pullar, J. D. (1970). J. agric. Sci., Camb. 74, 311.CrossRefGoogle Scholar