Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T07:02:14.886Z Has data issue: false hasContentIssue false

Further studies on the effects of the presence or absence of protozoa in the rumen on live-weight gain and wool growth of sheep

Published online by Cambridge University Press:  09 March 2007

S. H. Bird
Affiliation:
Department of Biochemistry and Nutrition, University of New England, Armidale, NSW 2351, Australia
R. A. Leng
Affiliation:
Department of Biochemistry and Nutrition, University of New England, Armidale, NSW 2351, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Lambs were given a diet of oaten chaff-sucrose-fishmeal(48:48:4, w/w) and either 60 (diet A) or 120 (diet B) g urea/kg sucrose in the diet. All animals were defaunated and half were refaunated. Each group of lambs (faunated and defaunated) was then divided into two groups and given diet A or diet B. Feed intake, wool growth and live-weight change were monitored over a 182 d period.

2. The level of urea supplementation had no effect on wool growth or live-weight gain.

3. Defaunated lambs gained live weight at a higher rate (9%, P < 0.06) and grew 37% more wool (P < 0.01) than the lambs with large populations of protozoa in their rumens.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

REFERENCES

Bird, S. H., Hill, M. K. & Leng, R. A. (1979). British Journal of Nutrition 42, 8187.CrossRefGoogle Scholar
Bird, S. H. & Leng, R. A. (1978). British Journal of Nutrition 40, 163167.CrossRefGoogle Scholar
Bird, S. H. & Leng, R. A. (1983). In Recent Advances in Animal Nutrition in Australia 1983, pp. 111118 [Farrell, D. J. and Pran, Vohra, editors]. Armidale: University of New England Publishing Unit.Google Scholar
Burggraaf, W. (1980). Masters Thesis. University of New England, Armidale, Australia.Google Scholar
Chapman, R. E. & Wheeler, J. L. (1963). Australian Journal of Science 26, 5354.Google Scholar
Christiansen, W. C., Kawashima, R. & Burroghs, W. (1965). Journal of Animal Science 24, 730734.CrossRefGoogle Scholar
Demeyer, D. I., Van Nevel, C. J. & Van De Voorde, G. (1982). Archiv für Tierernährung, Berlin 32, 595604.CrossRefGoogle Scholar
Eadie, M. J. & Gill, J. C. (1971). British Journal of Nutrition 26, 155167.CrossRefGoogle Scholar
Leng, R. A. (1982). British Journal of Nutrition 48, 399415.CrossRefGoogle Scholar
Leng, R. A., Davis, J. & Hill, M. K. (1984). Proceedings of the Australian Society of Animal Production 15, 431.Google Scholar
Lindsay, J. R. & Hogan, J. A. (1972). Australian Journal of Agricultural Research 23, 321330.CrossRefGoogle Scholar
McDonald, I. W. (1952). Biochemical Journal 51, 8690.CrossRefGoogle Scholar
Males, J. R. & Purser, D. B. (1970). Applied Microbiology 19, 485490.CrossRefGoogle Scholar
Pisulewski, P. M., Okorie, A. U., Buttery, P. J., Haresign, W. R. & Lewis, D. (1981). Journal of the Science of Food and Agriculture 32, 759766.CrossRefGoogle Scholar
Reis, P. J. & Schinckel, P. G. (1961). Australian Journal of Agricultural Research 12, 335352.CrossRefGoogle Scholar
Reis, P. J. & Tunks, D. A. (1969). Australian Journal of Agricultural Research 20, 775781.CrossRefGoogle Scholar
Rowe, J. B., Davies, A. & Broome, A. W. J. (1981). Proceedings of the Nutrition Society 40, 49A.Google Scholar
Satter, L. D. & Slyter, L. L. (1974). British Journal of Nutrition 32, 199208.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1968). Statistical Methods. Ames, Iowa: Iowa State University Press.Google Scholar
Veira, D. M. & Ivan, M. (1983). Journal of Dairy Science 66, 10151022.CrossRefGoogle Scholar