Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T06:46:53.783Z Has data issue: false hasContentIssue false

Glucose turnover and recycling in unrestrained and unanesthetized 48-h-old fasting or post-absorptive newborn pigs

Published online by Cambridge University Press:  09 March 2007

Jean-Paul Pégorier
Affiliation:
Centre de Recherches sur la Nutrition du CNRS, 9 rue Jules Hetzel, 92190 Meudon-Bellevue, France
Pierre-Henri Duée
Affiliation:
Centre de Recherches sur la Nutrition du CNRS, 9 rue Jules Hetzel, 92190 Meudon-Bellevue, France
Carlo Simoes Nunes
Affiliation:
Laboratoire de Physiologie de la Nutrition de PINRA, CNRZ, 78350 Jouy-en-Josas, France
Jean Peret
Affiliation:
Centre de Recherches sur la Nutrition du CNRS, 9 rue Jules Hetzel, 92190 Meudon-Bellevue, France
J. Girard
Affiliation:
Centre de Recherches sur la Nutrition du CNRS, 9 rue Jules Hetzel, 92190 Meudon-Bellevue, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The metabolism of glucose has been studied in 48-h-old unanesthetized fasting and post-absorptive sucking piglets.

2. Both [6-3H]- and [U-14CJglucose were administered either by a single injection method or by a primed infusion technique. The rates of glucose turnover and recycling were estimated under steady-state conditions.

3. The rates of glucose turnover and recycling in 48-h-old fasting or post-absorptive piglets were not statistically different when measured using the single injection technique or the printed infusion method.

4. The mean (with SE) rate of glucose turnover was 65.8 (2.5) in post-absorptive and 31.1 (1–9), μ mol/kg per min in fasted newborn pigs. Glucose utilization was linearly related to blood glucose concentration; regression analysis indicated a y-intercept of 7.2, μ mol/kg per min.

5. As tested by arterio-portal differences the gut was not releasing glucose or galactose in 5 h-post-absorptive sucking newborn pigs. Thus, the higher rates of glucose turnover in post-absorptive newborn pigs compared with fasting ones suggest that hepatic glucose production is enhanced in post-ahsorptive sucking piglets.

6. The mean (with SE) rates of glucose recycling were four times higher in post-absorptive piglets than in tasting ones, i.e. 14.4 (1.6) and 3.7 (0.5)% of [6-3H] glucose turnover respectively. As liver glycogen was exhausted in 48-h-old sucking piglets, this suggests that hepatic glucose production results from gluconeogenesis.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

Aumaître, A. & Duée, P. H. (1974). Annales de Zootechnie 23, 231236.Google Scholar
Ballard, F. J., Hanson, R. W. & Kronfeld, D. S. (1969). Federation Proceedings 28, 218231.Google Scholar
Bayley, H. S., Crozier, G. L. & Atkinson, J. L. (1979). In Energy Metabolism, pp. 439443 [Mount, L. E., editor].London: Butterworths.Google Scholar
Bengtsson, G., Gentz, J., Hakkarainen, J., Hellstrom, R. & Person, B. (1969). Journal of Nutrition 97, 311315.CrossRefGoogle Scholar
Bergrneyer, H. U. (1974). Methods of Enzymatic Analysis, pp. 12791281. New york: Academic press.Google Scholar
Best, J. D., Taborsky, G. J., Halter, J. B. & Porte, D. Jr (1981). Diabetes 30, 847850.Google Scholar
Bier, D. M., Leake, R. D., Haymond, M. W., Arnold, K. J., Gruenke, L. D., Sperling, M. A. & Kipnis, D. M. (1977). Diabetes 26, 10161023.CrossRefGoogle Scholar
Cherrington, A. D., Williams, P. E. & Harris, M. S. (1978). Metabolism 27, 787791.CrossRefGoogle Scholar
Clark, M. G., Bloxham, D. P., Holland, P. C. & Lardy, H. A. (1974). Journal of Biological Chemistry 249, 279290.Google Scholar
Cote, P. J., Wangsness, P. J., Varela-Alvarez, H., Griel, L. C. Jr & Kavanaugh, J. F. (1982). Journal of Animal Science 54, 8994.Google Scholar
Cowett, R. M., Susa, J. B., Oh, W. & Schwartz, R. (1978). Pediatric Research 12, 853857.Google Scholar
Davies, A. S. (1974). Animal Production 19, 367376.Google Scholar
Dunn, A, Katz, J., Golden, S. & Chenoweth, M. (1976). American Journal of Physiology 230, 11591162.Google Scholar
Ferré, P., Pégorier, J. P., Marliss, E. B. & Girard, J. R. (1978). American Journal of Physiology 234, E129E136.Google Scholar
Ferré, P., Turlan, P. & Girard, J. R. (1980). Journal of Developmental Physiology 2, 373387.Google Scholar
Flecknell, P. A., Wootton, R. & John, M. (1980). British Journal of Nutrition 44, 193203.Google Scholar
Flecknell, P. A., Wootton, R. & John, M. (1981 a). Clinical Science 60, 335338.Google Scholar
Flecknell, P. A., Wootton, R. & John, M. (1982). Biology of the Neonate 41, 221226.Google Scholar
Flecknell, P. A., Wootton, R. & John, M. (1983). Clinical Science 64, 161165.Google Scholar
Flecknell, P. A., Wootton, R., John, M. & Royston, J. P. (1981 b). Canadian Journal of Physiology and Pharmacology 59, 10691072.CrossRefGoogle Scholar
Freeman, C. P., Noakes, D. E. & Annisson, E. F. (1970). British Journal of Nutrition 24, 705716.Google Scholar
Gentz, J., Bengtsson, J. K., Hakkarainen, J., Hellstrom, R. & Person, B. (1970). American Journal of Physiology 218, 662668.Google Scholar
Growdon, W. A., Bratton, T. S., Houston, M. C., Tarplex, H. L. & Regen, D. M. (1971). American Journal of Physiology 221, 17331745.CrossRefGoogle Scholar
Heath, D. F. & Barton, R. N. (1973). Biochemical Journal 136, 503518.Google Scholar
Kliegrnan, R. M., Miettinen, E. L. & Adam, P. A. J. (1980). American Journal of Physiology 239, E287E293.Google Scholar
Müller, M. J., Paschen, U. & Seitz, H. J. (1983). American Journal of Physiology 244, E236E244.Google Scholar
Pégorier, J. P., Duée, P. H., Assan, R., Peret, J. & Girard, J. R. (1981). Journal of Developmental Physiology 3, 203217.Google Scholar
Pégorier, J. P., Duée, P. H., Girard, J. R. & Peret, J. (1982). Journal of Nutrition 112, 10381046.Google Scholar
Riis, P. M. & Grummer, R. H. (1969). Acta Agriculturae Scandinavica 19, 1117.Google Scholar
Robinson, B. H., Sherwood, W. G., Mayes, S., Freire, E., Oei, J. & Dibattista, D. (1980). Biology of the Neonate 37, 6066.CrossRefGoogle Scholar
Salmon-Legagneur, E. (1965). Annales de Zootechnie 14, 1137.Google Scholar
Schwartz, R. & Kahlan, S. (1975). In Progress in clinical and biological research, vol. 2. Preventability of Perinatal Injury, pp. 187200 [Adamson, K. and Fox, H. A., editors]. New york: A. r. liss inc.Google Scholar
Snedecor, G. W. & Cochran, G. W. (1957). Statistical methods, 6th ed. Ames, Iowa: Iowa state college press.Google Scholar
Somogyi, M. (1945). Journal of Biological Chemistry 160, 6973.Google Scholar
Swiatek, K. R., Chao, K. L., Chao, H. L., Cornblath, M. & Tildon, J. T. (1970). Biochimica et Biophysica Acta 222, 145151.Google Scholar
Swiatek, K. R., Kipnis, D. M., Mason, G., Chao, K. L. & Cornblath, M. (1968). American Journal of Physiology 214, 400405.Google Scholar
Tildon, J. T. & Sevdalian, D. A. (1972). Archives of Biochemistry and Biophysics 148, 382390.Google Scholar
Trayhurn, P., Dauncey, M. J. & Ingram, D. L. (1981). Comparative Biochemistry and Physiology 69B, 6973.Google Scholar
Verdonk, C. A., Rizza, R. A. & Gerich, J. E. (1981). Diabetes 30, 535537.CrossRefGoogle Scholar
Vernon, R. G. & Walker, D. G. (1972). Biochemical Journal 127, 521529.Google Scholar
Werner, W., Rey, H. G. & Wellinger, M. (1970). Zeitschrift für Analytisch Chemie 252, 224228.Google Scholar
Wileoxon, F. (1947). Biometrics 3, 119122CrossRefGoogle Scholar