Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T13:17:12.123Z Has data issue: false hasContentIssue false

Interrelationships between copper deficiency and dietary ascorbic acid in the rabbit

Published online by Cambridge University Press:  09 March 2007

C. E. Hunt
Affiliation:
Department of Nutrition and Food Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 021 39, USA
W. W. Carlton
Affiliation:
Department of Nutrition and Food Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 021 39, USA
P. M. Newberne
Affiliation:
Department of Nutrition and Food Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 021 39, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Copper deficiency was induced in growing rabbits and the effects of ascorbic acid supplementation were studied.

2. Signs of Cu deficiency, including reduced growth, achromotrichia and alopecia, anaemia, and gross alterations in the bones of the forelimbs, developed most rapidly in those animals fed ascorbic acid.

3. Microscopic lesions in ossification centres were seen only in bones of rabbits which hadm received the vitamin.

4. Calcium and phosphorus contents of ash from cortical bone were not changed.

5. Compared with the controls, the concentration of liver Cu decreased and that of iron increased (> 50%) in Cu-deficient animals.

6. Cytochrome oxidase activity was reduced in liver and heart in Cu-deficient animals; this effect was accentuated in heart preparations from animals fed ascorbic acid.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

Baxter, J. H. & Van Wyk, J. J. (1953). Bull. Johns Hopkins Hosp. 93, 1.Google Scholar
Baxter, J. H., Van Wyk, J. J. & Follis, R. H. Jr. (1953). Bull. Johns Hopkins Hosp. 93, 25.Google Scholar
Bennetts, H. W., Beck, A. B. & Harley, R. (1948). Aust. vet. J. 24, 237.Google Scholar
Bird, D. W., Savage, J. E. & O'Dell, B. L. (1966). Proc. Soc. exp. Biol. Med. 123, 250.Google Scholar
Bush, J. A., Jensen, W. N., Athens, J. W., Ashenbrucker, H., Cartwright, G. E. & Wintrobe, M. M. (1956). J. exp. Med. 103, 701.Google Scholar
Carlton, W. W. & Henderson, W. (1964). Avian Dis. 8, 48.CrossRefGoogle Scholar
Carlton, W. W. & Henderson, W. (1965). J. Nutr. 85, 67.CrossRefGoogle Scholar
Chase, M. S., Gubler, C. J., Cartwright, G. E. & Wintrobe, M. M. (1952). J. biol. Chem. 199, 757.CrossRefGoogle Scholar
Elvehjem, C. A. (1935). Physiol. Rev. 15, 471.CrossRefGoogle Scholar
Fiske, C. H. & Subbarow, Y. (1925). J. biol. Chem. 66, 375.Google Scholar
Follis, R. H. Jr, Bush, J. A., Cartwright, G. E. & Wintrobe, M. M. (1955). Bull. Johns Hopkins Hosp. 97, 405.Google Scholar
Gallagher, C. H. (1964). Nutritional Factors and Enzymological Disturbances in Animals. Philadelphia: J. B. Lippincott Co.Google Scholar
Gallagher, C. H., Judah, J. D. & Rees, K. R. (1956). Proc. R. Soc. B 145, 134.Google Scholar
Grifliths, D. E. & Wharton, D. C. (1961). J. biol. Chem. 236, 1850.CrossRefGoogle Scholar
Gubler, C. J., Cartwright, G. E. & Wintrobe, M. M. (1957). J. biol. Chem. 224, 533.Google Scholar
Hill, C. H. & Matrone, G. (1961). J. Nutr. 73, 425.CrossRefGoogle Scholar
Hill, C. H. & Starcher, B. (1965). J. Nutr. 85, 271.CrossRefGoogle Scholar
Howell, J. McC. & Davison, A. N. (1959). Biochem. J. 72, 365.Google Scholar
Hunt, C. E. & Carlton, W. W. (1965). J. Nutr. 87, 385.Google Scholar
Hunt, C. E., Landesman, J. M. & Newberne, P. M. (1967). Fedn Proc. Fedn Am. Socs exp. Biol. 26, 633 (abstract no. 2110)Google Scholar
Lahey, M. E., Gubler, C. J., Chase, M. S., Cartwright, G. E. & Wintrobe, M. M. (1952). Blood 7, 1053.CrossRefGoogle Scholar
Lemberg, R., Newton, N. & Clarke, L. (1962). Aust. J. exp. Biol. med. Sci. 40, 367.CrossRefGoogle Scholar
MacLennan, D. H. & Tzagoloff, A. (1965). Biochim. biophys. Acta 96, 166.CrossRefGoogle Scholar
Morrison, M., Horie, S. & Mason, H. S. (1963). J. biol. Chem. 238, 2220.Google Scholar
Nacht, S., Lee, G. R., Cartwright, G. E. & Wintrobe, M. M. (1967). Fedn Proc. Fedn Am. Socs exp. Biol. 26, 634 (abstract no. 2112).Google Scholar
Neufeld, H. A., Levay, A. N., Lucas, F. V., Martin, A. P. & Stotz, E. (1958). J. biol. Chem. 233, 209.CrossRefGoogle Scholar
Orr, C. W. M. (1966). Biochem. biophys. Res. Commun. 23, 854.Google Scholar
Pearl, W., Cascarano, J. & Zweifach, B. W. (1963). J. Histochem. Cytochem. 11, 102.CrossRefGoogle Scholar
Scales, F. M. & Harrison, A. P. (1920). J. ind. Engng Chem. 12, 350.Google Scholar
Schultze, M. O. (1939). J. biol. Chem. 129, 729.Google Scholar
Schultze, M. O. (1941). J. biol. Chem. 138, 219.Google Scholar
Smith, L. (1955). Meth. Biochem. Analysis 2, 427.CrossRefGoogle Scholar