Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T12:10:41.593Z Has data issue: false hasContentIssue false

Intravenous infusion of glucose and insulin in relation to milk secretion in the sow

Published online by Cambridge University Press:  06 August 2007

L. Reynolds
Affiliation:
Division of Agricultural Chemistry, School of Agricultural Sciences, University of Leeds, Leeds LS2 9JT
J. A. F. Rook
Affiliation:
Division of Agricultural Chemistry, School of Agricultural Sciences, University of Leeds, Leeds LS2 9JT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A comparison was made of the composition of milk from front and rear teats in four sows. There were small and not significant differences in fat, protein and lactose contents, and in the fatty-acid composition of the milk fat with the exception of the 18:3 acid where the difference was also small but significant.

2. The effects of intravenous infusions of glucose and insulin in lactating sows on milk secretion and blood composition were investigated in two sows.

3. Intravenous infusion of glucose had no effect on blood plasma glucose concentration but increased the yields of lactose, protein and water.

4. Intravenous infusion of insulin depressed plasma glucose concentration and the yields of lactose and water. The yield of protein was unaffected.

5. It is concluded that differences between the non-ruminant (the sow) and the ruminant in the responses in milk secretion to glucose infusion may be related to differences in the sensitivity to insulin of mammary tissue.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1977

References

REFERENCES

Anderson, D. M. (1974). J. Agric. Sci., Camb. 82, 29.CrossRefGoogle Scholar
Balmain, J. H. & Folley, S. J. (1951). Biochem. J. 49, 663.CrossRefGoogle Scholar
Bauman, D. E., Ingle, D. L., Mellenberger, R. W. & Davis, C. L. (1973). J. Dairy Sci. 56, 1520.CrossRefGoogle Scholar
British Standards Institution (1951). British Standard no. 1741. London: British Standards Institution.Google Scholar
British Standards Institution (1955). British Standard no. 696. London: British Standards Institution.Google Scholar
British Standards Institution (1963). British Standard no. 1741. 2nd ed. London: British Standards Institution.Google Scholar
Duncan, W. R. H. & Garton, G. A. (1966). J. Dairy Res. 33, 255.CrossRefGoogle Scholar
Fisher, L. J. & Elliot, J. M. (1966). J. Dairy Sci. 49, 826.CrossRefGoogle Scholar
Fisher, L. J., Elliot, J. M. & Corse, D. A. (1967). J. Dairy Sci. 50, 53.CrossRefGoogle Scholar
Huggett, A. St G. & Nixon, D. A. (1957). Lancet ii, 368.CrossRefGoogle Scholar
Jylling, B. & Sørensen, P. H. (1960). Årsskr. K. Vet.-Landbohøjsk. p. 20.Google Scholar
Kinsella, J. E. (1972). Lipids 7, 349.CrossRefGoogle Scholar
Kronfeld, D. S., Mayer, G. P., Robertson, J. McD. & Raggi, F. (1963). J. Dairy Sci. 46, 559.CrossRefGoogle Scholar
Linzell, J. L. (1967). J. Physiol., Lond. 190, 347.CrossRefGoogle Scholar
Perrin, D. R. (1954). J. Dairy Res. 21, 55.CrossRefGoogle Scholar
Pond, W. G., Van Vleck, L. D. & Hartman, D. A. (1962). J. Anim. Sci. 21, 293.CrossRefGoogle Scholar
Rook, J. A. F. & Hopwood, J. B. (1970). J. Dairy Res. 37, 193.CrossRefGoogle Scholar
Rook, J. A. F. & Line, C. (1961). Br. J. Nutr. 15, 109.CrossRefGoogle Scholar
Rook, J. A. F. & Wheelock, J. V. (1967). J. Dairy Res. 34, 273.CrossRefGoogle Scholar
Rook, J. A. F. & Witter, R. C. (1968). Proc. Nutr. Soc. 27, 71.CrossRefGoogle Scholar
Schmidt, G. H. (1966). J. Dairy Sci. 49, 381.CrossRefGoogle Scholar
Spincer, J., Rook., J. A. F. & Towers, K. G. (1969). Biochem. J. 111, 727.CrossRefGoogle Scholar
Smith, D. M. (1952). Proc. N.Z. Soc. Anim. Prod. 12, 102.Google Scholar
Storry, J. E. & Rook, J. A. F. (1965). Biochem. J. 97, 879.CrossRefGoogle Scholar
Whittlestone, W. G. (1952). J. Dairy Res. 19, 127.CrossRefGoogle Scholar