Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T15:29:00.920Z Has data issue: false hasContentIssue false

Inulin, oligofructose and mineral metabolism — experimental data and mechanism

Published online by Cambridge University Press:  09 March 2007

Katharina E. Scholz-Ahrens*
Affiliation:
Institute of Physiology and Biochemistry of Nutrition, Federal Dairy Research Centre, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
J. Schrezenmeir
Affiliation:
Institute of Physiology and Biochemistry of Nutrition, Federal Dairy Research Centre, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
*
*Corresponding author: Dr K. E. Scholz-Ahrens, fax +49 431 609 2472, email scholz-ahrens@bafm.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Numerous investigations performed in animal models in the past 10 years have shown repeatedly that non-digestible oligosaccharides (NDO), such as inulin, oligofructose or transgalacto-oligosaccharides (TOS), stimulate mineral absorption, mainly calcium and magnesium. Long-term beneficial effects on bone health have been indicated by accumulation of bone mineral content in growing rats or prevention of bone loss in ovariectomized rats. However, bone mineral content or density are not necessarily associated with bone quality. In recent studies both oligofructose and calcium prevented loss of trabecular bone area induced by oestrogen deficiency, this, however, occurred at different trabecular shapes. The effects of NDO on mineral metabolism may be based on the enhancement of passive and active mineral transport across the intestinal epithelium, mediated by an increase in certain metabolites of the intestinal flora and a reduction of pH. The possible impact of short-chain fatty acids, butyrate in particular, and of polyamines on the stimulation of mineral absorption capacity, and the interaction of oligofructose and antibiotics is discussed.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2002

References

Anita, CM & Anthony, WN (1992) Effects of sodium butyrate on 1,25-dihydroxyvitamin D3 receptor activity in primary chick kidney cells. Molecular and Cellular Endocrinology 84, 99107.Google Scholar
Baba, S, Ohta, A, Ohtsuki, M, Takizawa, T, Adachi, T & Hara, H (1996) Fructooligosaccharides stimulate the absorption of magnesium from the hindgut in rats. Nutrition Research 16, 657666.CrossRefGoogle Scholar
Bardócz, S, Grant, G, Brown, DS, Ralph, A & Pusztai, A (1993) Polyamines in food-implications for growth and health. Journal of Nutritional Biochemistry 4, 6671.CrossRefGoogle Scholar
Bouhnik, Y, Flourié, B, D'Agay-Abensour, L, Pochart, P, Gramet, G, Durand, M & Rambaud, J-C (1997) Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. Journal of Nutrition 127, 444448.CrossRefGoogle ScholarPubMed
Brommage, R, Binacua, C, Antille, S & Carrié, A-L (1993) Intestinal calcium absorption in rats is stimulated by dietary lactulose and other resistant sugars. Journal of Nutrition 123, 21862194.Google ScholarPubMed
Buts, J-P, de Keyser, N, Kolanowski, J, Sokal, E & van Hoof, F (1993) Maturation of villus and crypt cell functions in rats small intestine role of dietary polyamines. Digestive Diseases and Science 38, 10911098.CrossRefGoogle ScholarPubMed
Campbell, JM, Fahey, GC Jr & Wolf, BW (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. Journal of Nutrition 127, 130136.CrossRefGoogle ScholarPubMed
Chonan, O, Matsumoto, K & Watanuki, M (1995) Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Bioscience Biotechnology Biochemistry 59, 236239.CrossRefGoogle ScholarPubMed
Delzenne, N, Aertssens, J, Verplaetse, H, Roccaro, M & Roberfroid, M (1995) Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Science 57, 15791587.CrossRefGoogle ScholarPubMed
Delzenne, NM, Kok, N, Deloyer, P & Dandrifosse, G (2000) Dietary fructans modulate polyamine concentration in the cecum of rats. Journal of Nutrition 130, 24562460.Google ScholarPubMed
Djouzi, Z & Andrieux, C (1997) Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. British Journal of Nutrition 78, 313324.CrossRefGoogle ScholarPubMed
Ernährungsbericht (2000) Ernährungssituation in Deutschland, pp. 1758. [Deutsche Gesellschaft für Ernährung e.V., editor]. Frankfurt/Main.Google Scholar
Fooks, LJ, Fuller, R & Gibson, GR (1999) Prebiotics, probiotics and human gut microbiology. International Dairy Journal 9, 5361.CrossRefGoogle Scholar
Fraser, GE (1999) Associations between diet and cancer, ischemic heart disease, and all-cause mortality in non-Hispanic white California seventh day adventists. American Journal of Clinical Nutrition 70, 532S538S.CrossRefGoogle ScholarPubMed
Gibson, GR & Roberfroid, MB (1995) Dietary modulation of the human colonic microbiota, Introducing the concept of prebiotics. Journal of Nutrition 125, 14011412.CrossRefGoogle ScholarPubMed
Goda, T, Suruga, K, Takase, S, Ezawa, I & Hosoya, N (1995) Dietary maltitol increases calcium content and breaking force of femoral bone in ovariectomized rats. Journal of Nutrition 125, 28692873.Google ScholarPubMed
Hämäläinen, MM (1994) Bone repair in calcium-deficient rats, comparison of xylitol + calcium carbonate with calcium carbonate, calcium lactate and calcium citrate on the repletion of calcium. Journal of Nutrition 124, 874881.CrossRefGoogle ScholarPubMed
Hara, H, Nagata, M, Ohta, A & Kasai, T (1996) Increases in calcium absorption with ingestion of soluble dietary fiber, guar-gum hydrolysate, depend on the caecum in partially nephrectomized and normal rats. British Journal of Nutrition 76, 773784.CrossRefGoogle ScholarPubMed
Hein, A (1997) Der Einfluss unterschiedlicher Diäten auf die Struktur der Spongiosa von wachsenden und ovariektomierten Ratten. PhD Thesis, University of Kiel.Google Scholar
Heijnen, AMP, Brink, E, Lemmens, AG & Beynen, AC (1993) Ileal pH and apparent absorption of magnesium in rats fed on diets containing either lactose or lactulose. British Journal of Nutrition 70, 747756.CrossRefGoogle ScholarPubMed
Kimmel, DB (1996) Animal models for in vivo experimentation in osteoporosis research. In Osteoporosis, pp. 671690 [Marcus, R and Feldman, D, editors]. San Diego: Academic Press.Google Scholar
Klein, RF & Carlos, AS (1995) Inhibition of osteoblastic cell proliferation and ornithine decarboxylase activity by ethanol. Endocrinology 136, 34063411.CrossRefGoogle ScholarPubMed
Le Blay, G, Michel, C, Blottière, HM & Cherbut, C (1999) Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate in rats. Journal of Nutrition 129, 22312235.CrossRefGoogle Scholar
Levrat, M-A, Rémésy, C & Demigné, C (1991) High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. Journal of Nutrition 121, 17301737.Google ScholarPubMed
Löser, C, Eisel, A, Harms, D & Fölsch, UR (1999) Dietary polyamines are essential luminal growth factors for small intestinal and colonic mucosal growth and development. Gut 44, 1216.CrossRefGoogle ScholarPubMed
Lopez, HW, Coudray, C, Levrat-Verny, M, Feillet-Coudray, C, Demigne, C & Remesy, C (2000) Fructooligosaccharides enhance mineral apparent absorption and counteract the deleterious effects of phytic acid on mineral homeostasis in rats. Journal of Nutritional Biochemistry 11, 500508.CrossRefGoogle ScholarPubMed
Lupton, JR & Kurtz, PP (1993) Relationship of colonic luminal short-chain fatty acids and pH to in vivo cell proliferation in rats. Journal of Nutrition 123, 15221530.CrossRefGoogle ScholarPubMed
Mattila, PT, Svanberg, MJ, Pokka, P & Knuuttila, ML (1998) Dietary xylitol protects against weakening of bone biomechanical properties in ovariectomized rats. Journal of Nutrition 128, 18111814.CrossRefGoogle ScholarPubMed
Moshfegh, AJ, Friday, JE, Goldman, JP & Chug Ahuja, JK (1999) Presence of inulin and oligofructose in the diets of Americans. Journal of Nutrition 129, 1407S1411S.CrossRefGoogle ScholarPubMed
Noack, J, Kleessen, B, Proll, J, Dongowski, G & Blaut, M (1998) Dietary guar gum and pectin stimulate intestinal microbial polyamine synthesis in rats. Journal of Nutrition 128, 13851391.CrossRefGoogle ScholarPubMed
Noack, J, Dongowski, G, Hartmann, L & Blaut, M (2000) The human gut bacteria Bacteroides thetaiotaomicron and Fusobacterium varium produce putrescine and spermidine in cecum of pectin-fed gnotobiotic rats. Journal of Nutrition 130, 12251231.CrossRefGoogle ScholarPubMed
Ohta, A, Osakabe, N, Yamada, K, Saito, Y & Hidaka, H (1993) Effects of fructooligosaccharides on Ca, Mg and P absorption in rats. Japanese Society of Nutrition and Food Science 46, 123129.Google Scholar
Ohta, A, Baba, S, Takizawa, T & Adachi, T (1994) Effects of fructooligosaccharides on the absorption of magnesium in the magnesium-deficient rat model. Journal of Nutritional Science and Vitaminology 40, 171180.CrossRefGoogle ScholarPubMed
Ohta, A, Ohtsuki, M, Baba, S, Adachi, T, Sakata, T & Sakaguchi, EI (1995 a) Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. Journal of Nutrition 125, 24172424.CrossRefGoogle ScholarPubMed
Ohta, A, Ohtsuki, M, Baba, S, Takizawa, T, Adachi, T & Kimura, S (1995 b) Effects of fructooligosaccharides on the absorption of iron, calcium and magnesium in iron-deficient anemic rats. Journal of Nutritional Science and Vitaminology 41, 281291.CrossRefGoogle ScholarPubMed
Ohta, A, Ohtsuki, M, Hosono, A, Adachi, T, Hara, H & Sakata, T (1998 a) Dietary fructooligosaccharides prevent osteopenia after gastrectomy in rats. Journal of Nutrition 128, 106110.CrossRefGoogle ScholarPubMed
Ohta, A, Ohtsuki, M, Uehara, M, Hosono, A, Hirayama, M, Adachi, T & Hara, H (1998 b) Dietary fructooligosaccharides prevent postgastrectomy anemia and osteopenia in rats. Journal of Nutrition 128, 485490.CrossRefGoogle ScholarPubMed
Ohta, A, Motohashi, Y, Ohtsuki, M, Hirayama, M, Adachi, T & Sakuma, K (1998 c) Dietary fructooligosaccharides change the intestinal mucosal concentration of calbindin-D9k in rats. Journal of Nutrition 128, 934939.CrossRefGoogle Scholar
Rémésy, C, Levrat, M-A, Gamet, L & Demigné, C (1993) Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. American Journal of Physiology 264, G855862.Google ScholarPubMed
Rowland, IR & Tanaka, R (1993) The effects of transgalactosylated oligosaccharides on gut flora metabolism in rats associated with a human faecal microflora. Journal of Applied Bacteriology 74, 667674.CrossRefGoogle ScholarPubMed
Sako, T, Matsumoto, K & Tanaka, R (1999) Recent progress on research and application of non-digestible galacto-oligosaccharides. International Dairy Journal 9, 6980.CrossRefGoogle Scholar
Schneeman, BO (1999) Fiber, inulin and oligofructose, similarities and differences. Journal of Nutrition 129, 1424S1427S.CrossRefGoogle ScholarPubMed
Scholz-Ahrens, KE, Hein, A & Bößmann, K (1997) Quantification of bone structure as parameter of calcium bioavailability. In Bioavailability, Proceedings of the International Symposium on Bioavailability at the Agricultural University of Wageningen, p. 124Google Scholar
Scholz-Ahrens, KE, van Loo, J & Schrezenmeir, J (1998) Oligofructose stimuliert die Femurmineralisation in Abhängigkeit von der Calciumzufuhr bei der ovariektomierten Ratte. European Journal of Nutrition 37, 124.Google Scholar
Scholz-Ahrens, KE, Schaafsma, G, van den Heuvel, EGHM & Schrezenmeir, J (2001) Effects of prebiotics on mineral metabolism. American Journal of Clinical Nutrition 73, 459S464S.CrossRefGoogle ScholarPubMed
Scholz-Ahrens, KE, Açil, Y & Schrezenmeir, J (2002) Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats. Submitted to. British Journal of Nutrition.CrossRefGoogle ScholarPubMed
Schulz, AG, Van Amelsvoort, JM & Beynen, AC (1993) Dietary native resistant starch but not retrograded resistant starch raises magnesium and calcium absorption in rats. Journal of Nutrition 123, 17241731.CrossRefGoogle Scholar
Straub, BW, Kicherer, M, Schilcher, SM & Hammes, WP (1995) The formation of biogenic amines by fermentation organisms. Zeitschrift für Lebensmittel-Untersuchung und –Forschung 201, 7982.CrossRefGoogle ScholarPubMed
Takahara, S, Morohashi, T, Sano, T, Ohta, A, Yamada, S & Sasa, R (2000) Fructooligosaccharide consumption enhances femoral bone volume and mineral concentrations in rats. Journal of Nutrition 130, 17921795.CrossRefGoogle ScholarPubMed
Trinidad, TP, Wolever, TM & Thompson, LU (1996) Effect of acetate and propionate on calcium absorption from the rectum and distal colon of humans. American Journal of Nutrition 63, 574578.Google ScholarPubMed
van Loo, J, Cummings, J, Delzenne, N, Englyst, H, Franck, A, Hopkins, M, Kok, N, Macfarlane, G, Newton, D, Quigley, M, Roberfroid, M, van Vliet, T & van den Heuvel, EGHM (1999) Functional food properties of NDO a consensus report from the ‘Endo’ project (DGXII AIRII-CT94-1095). British Journal of Nutrition 81, 121132.Google ScholarPubMed
Wang, X & Gibson, GR (1993) Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. Journal of Applied Bacteriology 75, 373380.CrossRefGoogle ScholarPubMed