Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T07:47:33.334Z Has data issue: false hasContentIssue false

Iron metabolism in the veal calf. The availability of different iron compounds*

Published online by Cambridge University Press:  24 July 2007

I. Bremner
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen, AB2 9SB
A. C. Dalgarno
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen, AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The haematological status of Ayrshire bull calves reared on fat-supplemented skim milk from about 17 d of age has been examined. The calves were moderately anaemic after an 11-week experiment and it was shown that their performance was related to their blood haemoglobin concentration.

2. The relative availabilities of iron from FeSO4, ferric citrate, ferric-ethylenediaminetetra-acetate and iron phytate were compared at a supplementary dietary concentration of 30 μg Fe/g. No significant differences were noted between the three soluble Fe sources but the Fe of the insoluble iron phytate was less available.

3. The decreases in blood haemoglobin concentrations in all calves were greatest in the early weeks of the experiment. In calves given supplementary Fe, however, there was generally an improvement in haematological status after 6 weeks. Plasma Fe concentrations fell to 0·20 μg/ml in the most deficient animals. Total Fe binding capacities averaged about 10 μg Fe/ml in the later stages of the experiment.

4. Some of the calves were copper-deficient, and in some animals the effects of dietary Cu supplementation on both Cu and Fe metabolism were studied. About 50% of the supplementary Cu was retained in the livers of the calves.

5. A dietary intake of 40 μg Fe/g milk powder appears to be sufficient to prevent all but a very mild anaemia, provided the Fe is presented in soluble form.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1973

References

REFERENCES

Ammerman, C. B., Wing, J. M., Dunavant, B. G., Robertson, W. K., Feaster, J. P. & Arrington, L. R. (1967). y. Anim. Sci. 26, 404.CrossRefGoogle Scholar
Anke, M. (1966). Arch. Tierernähr. 16, 199.CrossRefGoogle Scholar
Birdsall, N. J. M., Kok, D'A. & Wild, F. (1965). J. clin. Path. 18, 453.CrossRefGoogle Scholar
Blaxter, K. L., Sharman, G. A. M. & MacDonald, A. M. (1957). Br. J. Nutr. 11, 234.CrossRefGoogle Scholar
Brambell, F. W. R. (1965). Report of the Technical Committee to Empire into the Welfare of Animals Kept under Intensive Livestock Hushandry Systems. [Cmnd 2836]. London: HM Stationery Office.Google Scholar
Bremner, K. C. (1966). Aust. J. exp. Biol. med. Sci. 44, 259.CrossRefGoogle Scholar
Brise, H. & Hallberg, L. (1962). Acta med. scand. 171, Suppl. 376, p. 23.CrossRefGoogle Scholar
Dalton, R. G. & Fisher, E. W. (1961). Br. uet. J. 117, 115.Google Scholar
Drysdale, J. W. & Ramsay, W. N. M. (1965). Biochem. J. 95, 282.CrossRefGoogle Scholar
Eeckhout, W., Casteels, M. & Buysse, F. (1969). Annls Zootech. 18, 249.CrossRefGoogle Scholar
Holman, H. H. (1956). Br. vet. J. 112, 91.CrossRefGoogle Scholar
Hopping, J. M. & Ruliffson, W. S. (1963). Am. J. Physiol. 205, 885.CrossRefGoogle Scholar
Houchin, O. B. (1958). Clin. Chem. 4, 519.CrossRefGoogle Scholar
Kolb, E. (1963). Adv. vet. Sci. 8, 49.Google Scholar
Lanz, H. (1956). Schweizer Arch. Tierheilk. 98, 153.Google Scholar
Lee, G. R., Nacht, S., Lukens, J. N. & Cartwright, G. E. (1968). J. clin. Invest. 47, 2058.CrossRefGoogle Scholar
Leslie, A. J. & Kaldor, I. (1971 a). Am. J. Physiol. 220, 1000.CrossRefGoogle Scholar
Leslie, A. J. & Kaldor, I. (1971 b). Br. J. Nutr. 26, 469.CrossRefGoogle Scholar
Matrone, G., Conley, C., Wise, G. H. & Waugh, R. K. (1957). J. Dairy Sci. 40, 1435.CrossRefGoogle Scholar
Osaki, S., Johnson, D. A. & Frieden, E. (1966). J. biol. Chem. 241, 2746.CrossRefGoogle Scholar
Owen, F. G., Voelker, H. H., Jacobson, N. L. & Allen, K. S. (1955). J. Dairy Sci. 38, 891.CrossRefGoogle Scholar
Ragan, H. A., Nacht, S., Lee, G. R., Bishop, C. R. & Cartwright, G. E. (1969). Am. J. Physiol. 217, 1320.CrossRefGoogle Scholar
Rice, E. W. (1962). Analyt. Biochem. 3, 452.CrossRefGoogle Scholar
Roy, J. H. B., Gaston, H. J., Shiilam, K. W. G., Thompson, S. Y., Stobo, I. J. F. & Greatorex, J. C. (1964). Br. J. Nutr. 18, 467.CrossRefGoogle Scholar
Shand, A. & Lewis, G. (1957). Vet. Rec. 69, 618.Google Scholar
Tarvydas, H., Jordan, S. M. & Morgan, E. W. (1968). Br. J. Nutr. 22, 565.CrossRefGoogle Scholar
Turnbull, A., Cleton, F. & Finch, C. A. (1962). J. clin. Invest. 41, 1897.CrossRefGoogle Scholar
Underwood, E. J. (1971). Trace Elements in Human and Animal Nutrition 3rd ed. New York: Academic Press.Google Scholar
Walsh, R. J., Kaldor, I., Brading, I. & George, E. P. (1955). Australas. Ann. Med. 4, 272.CrossRefGoogle Scholar
Wing, J. M., Jacobson, N. L. & Allen, R. S. (1953). J. Dairy Sci. 38, 1006.CrossRefGoogle Scholar
Young, D. S. & Hicks, J. M. (1965). J. clin. Path. 18, 98.CrossRefGoogle Scholar