Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T11:10:21.042Z Has data issue: false hasContentIssue false

Is zinc deficiency a risk factor for atherosclerosis?

Published online by Cambridge University Press:  09 March 2007

John H. Beattie*
Affiliation:
Division of Cellular Integrity, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK
In-Sook Kwun
Affiliation:
Department of Food Science and Nutrition, Andong National University, Andong, Kyungpook, South Korea
*
*Corresponding author: Dr John H. Beattie, fax +44 1224 716 662, email j.beattie@rri.sari.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The development of atherosclerosis is influenced by genetic, lifestyle and nutritional risk factors. Zn and metallothionein deficiency can enhance oxidative-stress-related signalling processes in endothelial cells, and since changes in available plasma Zn may affect the Zn status of the endothelium, Zn deficiency could be a risk factor for IHD. Although the association of Zn with many proteins is essential for their function, three key signalling processes are highlighted as being principal targets for the effect of Zn deficiency: the activation of NF-κB, the activation of caspase enzymes and the signalling of NO. The need to develop a reliable indicator of Zn status is critical to any epidemiological approach for studying the relationship between Zn status and disease incidence. Studies using appropriate animal models and investigating how the plasma Zn pool influences endothelial intracellular labile Zn would be helpful in appreciating the importance of Zn deficiency in atherogenesis.

Type
Horizons in Nutritional Science
Copyright
Copyright © The Nutrition Society 2004

References

Alissa, EM, Bahijri, SM & Ferns, GA (2003) The controversy surrounding selenium and cardiovascular disease: a review of the evidence. Med Sci Monit 9, RA9RA18.Google ScholarPubMed
Anderson, TJ (2003) Nitric oxide, atherosclerosis and the clinical relevance of endothelial dysfunction. Heart Fail Rev 8, 7186.CrossRefGoogle ScholarPubMed
Ball, MJ & Ackland, ML (2000) Zinc intake and status in Australian vegetarians. Br J Nutr 83, 2733.CrossRefGoogle ScholarPubMed
Bannon, P, James, N & Jessup, W (2003) The endothelial cell in atherosclerosis. In Atherosclerosis: Gene Expression, Cell Interactions and Oxidation, pp. 137158 [Dean, RT and Kelly, DT, editors]. Oxford: Oxford University Press.Google Scholar
Bao, B, Prasad, AS, Beck, FWJ & Godmere, M (2003) Zinc modulates mRNA levels of cytokines. Am J Physiol Endocrinol Metab 285, E1095E1102.CrossRefGoogle ScholarPubMed
Berendji, D, Kolb-Bachofen, V, Meyer, KL, Grapenthin, O, Weber, H, Wahn, V & Kroncke, KD (1997) Nitric oxide mediates intracytoplasmic and intranuclear zinc release. FEBS Lett 405, 3741.CrossRefGoogle ScholarPubMed
Carey, LC, Coyle, P, Philcox, JC & Rofe, AM (2000) Ethanol decreases zinc transfer to the fetus in normal but not metallothionein-null mice. Alcohol Clin Exp Res 24, 12361240.Google Scholar
Chesters, JK (1997) Zinc. In Handbook of Nutritionally Essential Mineral Elements, pp. 185230 [O'Dell, BL and Sunde, RA, editors]. New York: Marcel Dekker Inc.Google Scholar
Coleman, JE (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61, 897946, 897946.CrossRefGoogle ScholarPubMed
De Martin, R, Hoeth, M, Hofer-Warbinek, R & Schmid, JA (2000) The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol 20, E83E88.Google ScholarPubMed
Duvall, E & Wyllie, AH (1986) Death and the cell. Immunol Today 7, 115119.CrossRefGoogle ScholarPubMed
Fanzo, JC, Reaves, SK, Cui, L, Zhu, L & Lei, KY (2002) p53 Protein and p21 mRNA levels and caspase-3 activity are altered by zinc status in aortic endothelial cells. Am J Physiol 283, C631C638.CrossRefGoogle ScholarPubMed
Geng, YJ (2001) Molecular signal transduction in vascular cell apoptosis. Cell Res 11, 253264.CrossRefGoogle ScholarPubMed
Gow, A & Ischiropoulos, H (2002) NO running on MT: regulation of zinc homeostasis by interaction of nitric oxide with metallothionein. Am J Physiol Lung Cell Mol Physiol 282, L183L184.CrossRefGoogle ScholarPubMed
Haase, H & Beyersmann, D (2002) Intracellular zinc distribution and transport in C6 rat glioma cells. Biochem Biophys Res Commun 296, 923928.CrossRefGoogle ScholarPubMed
Hainaut, P & Mann, K (2001) Zinc binding and redox control of p53 structure and function. Antioxid Redox Signal 3, 611623.CrossRefGoogle ScholarPubMed
Hambidge, M (2000) Human zinc deficiency. J Nutr 130, 1344S1349S.CrossRefGoogle ScholarPubMed
Hambidge, M (2003) Biomarkers of trace mineral intake and status. J Nutr 133, Suppl. 3, 948S955S.CrossRefGoogle ScholarPubMed
Hambidge, M & Krebs, NF (2001) Interrelationships of key variables of human zinc homeostasis: relevance to dietary zinc requirements. Annu Rev Nutr 21, 429452.CrossRefGoogle ScholarPubMed
Hennig, B, Meerarani, P, Ramadass, P, Toborek, M, Malecki, A, Slim, R & McClain, CJ (1999 b) Zinc nutrition and apoptosis of vascular endothelial cells: implications in atherosclerosis. Nutrition 15, 744748.CrossRefGoogle ScholarPubMed
Hennig, B, Meerarani, P, Toborek, M, & McClain, CJ (1999 a) Antioxidant-like properties of zinc in activated endothelial cells. Am J Coll Nutr 18, 152158.CrossRefGoogle ScholarPubMed
Hennig, B, Toborek, M & McClain, CJ (1996) Antiatherogenic properties of zinc: implications in endothelial cell metabolism. Nutrition 12, 711717.CrossRefGoogle ScholarPubMed
Hotz, C, Peerson, JM & Brown, KH (2003) Suggested lower cutoffs of serum zinc concentrations for assessing zinc status: reanalysis of the second National Health and Nutrition Examination Survey data (1976–1980). Am J Clin Nutr 78, 756764.CrossRefGoogle ScholarPubMed
Kim, CH, Kim, JH, Moon, SJ, Chung, KC, Hsu, CY, Seo, JT & Ahn, YS (1999) Pyrithione, a zinc ionophore, inhibits NF-kappaB activation. Biochem Biophys Res Commun 259, 505509.CrossRefGoogle ScholarPubMed
King, JC, Shames, DM & Woodhouse, LR (2000) Zinc homeostasis in humans. J Nutr 130, 1360S1366S.CrossRefGoogle ScholarPubMed
Kohrl, J, Brigelius-Flohe, R, Bock, A, Gartner, R, Meyer, O & Flohe, L (2000) Selenium in biology: facts and medical perspectives. Biol Chem 381, 849864.Google ScholarPubMed
Kok, FJ, Van Duijn, CM, Hofman, A, Van der Voet, GB, De Wolff, FA, Paays, CH & Valkenburg, HA (1988) Serum copper and zinc and the risk of death from cancer and cardiovascular disease. Am J Epidemiol 128, 352359.CrossRefGoogle ScholarPubMed
Kroncke, KD, Fehsel, K, Schmidt, T, Zenke, FT, Dasting, I, Wesener, JR, Bettermann, H, Breunig, KD & Kolb-Bachofen, V (1994) Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem Biophys Res Commun 200, 11051110.CrossRefGoogle ScholarPubMed
Kudrin, AV (2000) Trace elements in regulation of NF-kappaB activity. J Trace Elem Med Biol 14, 129142.CrossRefGoogle ScholarPubMed
Lentner, C (editor) (1984) Geigy Scientific Tables, vol. 3. Basle: Ciba-Geigy Ltd.Google Scholar
Lichtlen, P & Schaffner, W (2001) The "metal transcription factor" MTF-1: biological facts and medical implications. Swiss Med Wkly 131, 647652.Google Scholar
Lowe, NM, Green, A, Rhodes, JM, Lombard, M, Jalan, R & Jackson, MJ (1993) Studies of human zinc kinetics using the stable isotope 70 Zn. Clin Sci (Lond) 84, 113117.CrossRefGoogle Scholar
Maret, W, Jacob, C, Vallee, BL & Fischer, EH (1999) Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc Natl Acad Sci USA 96, 19361940.CrossRefGoogle ScholarPubMed
May, MJ & Ghosh, S (1998) Signal transduction through NF-kappa B. Immunol Today 19, 8088.CrossRefGoogle ScholarPubMed
Meerarani, P, Ramadass, P, Toborek, M, Bauer, HC, Bauer, H & Hennig, B (2000) Zinc protects against apoptosis of endothelial cells induced by linoleic acid and tumor necrosis factor alpha. Am J Clin Nutr 71, 8187.CrossRefGoogle ScholarPubMed
Miles, AT, Hawksworth, GM, Beattie, JH & Rodilla, V (2000) Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol 35, 3570.CrossRefGoogle ScholarPubMed
Outten, CE & O'Halloran, TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 24882492.CrossRefGoogle ScholarPubMed
Pearce, LL, Gandley, RE, Han, W, Wasserloos, K, Stitt, M, Kanai, AJ, McLaughlin, MK, Pitt, BR & Levitan, ES (2000 a) Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc Natl Acad Sci USA 97, 477482.CrossRefGoogle ScholarPubMed
Pearce, LL, Wasserloos, K, St Croix, M, Gandley, R, Levitan, ES & Pitt, BR (2000 b) Metallothionein, nitric oxide and zinc homeostasis in vascular endothelial cells. J Nutr 130, 1467S1470S.CrossRefGoogle ScholarPubMed
Perry, DK, Smyth, MJ, Stennicke, HR, Salvesen, GS, Duriez, P, Poirier, GG & Hannun, YA (1997) Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J Biol Chem 272, 1853018533.CrossRefGoogle ScholarPubMed
Philcox, JC, Coyle, P, Michalska, A, Choo, KH & Rofe, AM (1995) Endotoxin-induced inflammation does not cause hepatic zinc accumulation in mice lacking metallothionein gene expression. Biochem J 308, 543546.CrossRefGoogle Scholar
Powell, SR (2000) The antioxidant properties of zinc. J Nutr 130, 1447S1454S.CrossRefGoogle ScholarPubMed
Prasad, AS, Bao, B, Beck, FW & Sarkar, FH (2002) Zinc enhances the expression of interleukin-2 and interleukin-2 receptors in HUT-78 cells by way of NF-kappaB activation. J Lab Clin Med 140, 272289.CrossRefGoogle ScholarPubMed
Prasad, AS, Fitzgerald, JT, Hess, JW, Kaplan, J, Pelen, F & Dardenne, M (1993) Zinc deficiency in elderly patients. Nutrition 9, 218224.Google ScholarPubMed
Rowe, DJ & Bobilya, DJ (2000) Albumin facilitates zinc acquisition by endothelial cells. Proc Soc Exp Biol Med 224, 178186.Google ScholarPubMed
St Croix, CM, Wasserloos, KJ, Dineley, KE, Reynolds, JJ & Pitt, BR (2002) Nitric oxide-inducing changes in intracellular zinc homeostasis are mediated by metallothionein/thionein. Am J Physiol Lung Cell Mol Physiol 282, L185L192.CrossRefGoogle Scholar
Strain, JJ (1998) Trace elements and cardiovascular disease. Bibl Nutr Dieta 127140.Google ScholarPubMed
Truong-Tran, AQ, Carter, J, Ruffin, RE & Zalewski, PD (2001) The role of zinc in caspase activation and apoptotic cell death. Biometals 14, 315330.CrossRefGoogle ScholarPubMed
Truong-Tran, AQ, Ho, LH, Chai, F & Zalewski, PD (2000) Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death. J Nutr 130, 1459S1466S.CrossRefGoogle ScholarPubMed
Tunstall-Pedoe, H (editor) (2003) Monica Monograph and Multimedia Sourcebook: World's Largest Study of Heart Disease, Stroke, Risk Factors and Population Trends 1979–2002. Geneva: WHO.Google Scholar
Vallee, BL & Falchuk, KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73, 79118.CrossRefGoogle ScholarPubMed
Webster, KA, Prentice, H & Bishopric, NH (2001) Oxidation of zinc finger transcription factors: physiological consequences. Antioxid Redox Signal 3, 535548.CrossRefGoogle ScholarPubMed
World Health Organisation (2002) Quantifying selected major risks to health. In The World Health Report 2002. Geneva: WHO.Google Scholar
Wilkins, GM & Leake, DS (1994) The oxidation of low density lipoprotein by cells or iron is inhibited by zinc. FEBS Lett 341, 259262.CrossRefGoogle ScholarPubMed
Yancy, WS, Westman, EC, French, PA & Califf, RM (2003) Diets and clinical coronary events: the truth is out there. Circulation 107, 1016.CrossRefGoogle ScholarPubMed
Zou, MH, Shi, C & Cohen, RA (2002) Oxidation of the zinc–thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 109, 817826.CrossRefGoogle ScholarPubMed