Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T13:52:15.040Z Has data issue: false hasContentIssue false

Metabolism of maltitol by conventional rats and mice and germ-free mice, and comparative digestibility between maltitol and sorbitol in germ-free mice

Published online by Cambridge University Press:  09 March 2007

P. Würsch
Affiliation:
Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
B. Koellreutter
Affiliation:
Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
F. Gétaz
Affiliation:
Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
M. J. Arnaud
Affiliation:
Nestlé Research Centre, Nestec Ltd, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The metabolism of maltitol (4-α-D-glucosylsorbitol) was assessed in fasting conventional (C) rats, C mice and germ-free (GF) mice, using [U-14C]maltitol. The radiorespirometric patterns of 14CO2 collected for 48 h after the administration of labelled maltitol were characterized by a constant rate of 14CO2 production lasting 4 h for both C rats and mice. The pattern for the GF mice showed a peak at the second hour followed immediately by a slow decrease. The percentage recovery of 14CO2 was significantly lower for the GF mice (59%) compared with C animals (72–74%). Urine, faeces and intestinal contents after 48 h totalled 19% of the administered radioactivity in the C rats and mice and 39% in the GF mice. The digestibility of maltitol and the absorption of sorbitol in GF mice was also assessed. The caecum and small intestine of GF mice, 3 h after administration of equimolar quantities of maltitol (140 mg/kg body-weight) or sorbitol (70 mg/kg body-weight), contained 39 and 51 % of the ingested dose respectively, present mostly in the caecum as sorbitol. The α-glucosidase (maltase) (EC 3.2.1.20) activity of the small intestine was appreciably higher (1·5–1·7 times) in the GF mice than in the C mice. These results suggest that the enzymic activities in the small intestine of mice and rats are sufficient to hydrolyse maltitol extensively. Consequently, the slow absorption of sorbitol seems to be an important factor limiting the overall assimilation of maltitol in the small intestine.

Type
Carbohydrate Digestion by Colonic Microflora
Copyright
Copyright © The Nutrition Society 1990

References

REFERENCES

Abraham, R. R., Davis, M., Yudkin, J. & Williams, R. (1981). Controlled clinical trial of a new non-calorigenic sweetening agent. Journal of Human Nutrition 35, 165172.Google ScholarPubMed
Anon (1977). Report of the American Institute of Nutrition ad hoc committee on standards for nutritional studies. Journal of Nutrition 107, 13401348.CrossRefGoogle Scholar
Beaugerie, L. (1987). Contribution à l'étude du transport intestinal du sorbitol chez l'homme. Diplôme étude approfondie (DEA), Hôpital St Lazare (Paris).Google Scholar
Beutler, H.-O. (1984). Xylitol. In Methods of Enzymatic Analysis, 3rd ed., vol. 6, pp. 484490 [Bergmeyer, H. U., editor]. Weinheim: Verlag Chemie.Google Scholar
Dahlqvist, A. (1964). Method for assay of intestinal disaccharidases. Analytical Biochemistry 7, 1825.CrossRefGoogle ScholarPubMed
Dahlqvist, A. & Telenius, U. (1965). The utilisation of a presumably low-calorigenic carbohydrate derivative. Acta Physiologica Scandinavica 63, 156163.CrossRefGoogle Scholar
Dharmaraj, H., Patil, H., Grimble, G. K. & Silk, D. B. A. (1987). Lactitol, a new hydrogenated lactose derivative: intestinal absorption and laxative threshold in normal human subjects. British Journal of Nutrition 57, 195199.Google Scholar
De Vries, J. J., Collin, T., Bijleveld, C. M. A. & Kleibeuker, J. H. (1988). The use of complex carbohydrates in barley groats for determination of the mouth-to-caecum transit time. Scandinavian Journal of Gastroenterology 23, 905912.CrossRefGoogle ScholarPubMed
Ertel, N. M., Algun, S., Kemp, F. W. & Mittler, J. C. (1983). The metabolic fate of exogenous sorbitol in the rat. Journal of Nutrition 113, 566573.CrossRefGoogle ScholarPubMed
Fabry, I. (1987). Malbit and its applications in the food industry. In Developments in Sweeteners, vol. 3, pp. 83108 [Grenby, T. H., editor]. Barking, Essex: Elsevier Applied Science Publishers.Google Scholar
Felber, J.-P., Tappy, L., Vouillamoz, D., Randin, J.-P. & Jéquier, E. (1987). Comparative studies of maltitol and sucrose by means of continuous indirect calorimetry. Journal of Parenteral and Enteral Nutrition 11, 250254.CrossRefGoogle ScholarPubMed
Grossklaus, R. (1987). Dosisabhängigkeit der energetischen Nutzung von Zuckeraustauschstoffen Deutsche Zanhärztliche Zeitschrift 42, S154S151.Google Scholar
Imfeld, T. (1977). Evaluation of the cariogenicity of confectionery by intraoral wire-telemetry. Helvetica Odontologica Acta 21, 18.Google Scholar
Imfeld, T. & Lutz, F. (1984). Malbit, ein zahnfreundlicher Zuckeraustauschstoff. Swiss Food 6, 1319.Google Scholar
Kawai, Y. & Morotomi, M. (1978). Intestinal enzyme activities in germfree, conventional, and gnotobiotic rats associated with indigenous microorganisms. Infection and Immunity 19, 771778.CrossRefGoogle ScholarPubMed
Lian-Loh, R., Birch, G. G. & Coates, M. E. (1982). The metabolism of maltitol in the rat. British Journal of Nutrition 48, 477481.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N.-J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Nilsson, U. & Jägerstad, M. (1987). Hydrolysis of lactitol, maltitol and palatinit by human intestinal biopsies. British Journal of Nutrition 58, 199206.CrossRefGoogle ScholarPubMed
Oku, T., Inoue, Y. & Hosoya, N. (1971). Absorption and excretion of maltitol-U-14C in rat. Journal of the Japanese Society of Food and Nutrition 24, 399404.Google Scholar
Preuss, A. & Thier, H. P. (1982). Quantitative Analyse natürlicher Dickungsmittel durch Methanolyse and Capillargaschromatographie. Zeitschrift Lebensmittel Untersuchung Forschung 175, 93100.CrossRefGoogle Scholar
Read, N. W., Cammack, J., Edwards, C. & Holgate, A. M. (1982). Is the transit time of a meal through the small intestine related to the rate at which it leaves the stomach? Gut 23, 824828.CrossRefGoogle Scholar
Rennhard, H. M. & Bianchine, J. R. (1976). Metabolism and caloric utilization of orally administered maltitol- 14C in rat, dog and man. Journal of Agriculture and Food Chemistry 24, 287291.CrossRefGoogle ScholarPubMed
Rérat, A., Vaugelade, P. & Vaissade, P. (1987). Etude de la digestion d'un sirop de glucose hydrogéné riche en maltitol chez le port éveillé. Bulletin de I'Académie Nationale de Médecine 171, 183187.Google Scholar
Rosiers, C., Verwearde, F., Dupas, H. & Bouquelet, S. (1985). New approach to the metabolism of hydrogenated starch hydrolysate: hydrolysis by maltase/glucoamylase complex of the rat intestinal mucosa. Annals of Nutrition and Metabolism 29, 7682.CrossRefGoogle Scholar
Saxer, U. P. (1984). Plaque accumulation after rinsing with different sweetened solutions. Swiss Dent 5, 3335.Google Scholar
Schnell-Dompert, E. & Siebert, G. (1980). Metabolism of sorbitol in the intact organism. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 361, 10691075.CrossRefGoogle Scholar
Whitt, D. D. & Savage, D. C. (1980). Kinetics of changes induced by indigenous microbiota in the activity levels of alkaline phosphate and disaccharides in small intestinal enterocytes in mice. Infection and Immunity 29, 144151.CrossRefGoogle Scholar
Würsch, P. & Anantharaman, G. (1989). Aspects of the energy value assessment of the polyols. In Progress in Sweeteners, pp. 241266 [Grenby, T. H., editor]. Barking, Essex: Elsevier Applied Science Publishers.Google Scholar
Würsch, P. & Del Vedovo, S. (1981). Inhibition of human digestive enzymes by hydrogenated malto-oligosaccharides. International Journal of Vitaminology and Nutrition Research 51, 161165.Google ScholarPubMed
Würsch, P. & Koellreutter, B. (1982). Maltitol and maltotriitol as inhibitors of acid production in human dental plaque. Caries Research 16, 9095.CrossRefGoogle ScholarPubMed
Würsch, P., Koellreutter, B. & Schweizer, T. (1990). Hydrogen excretion after ingestion of five different sugar alcohols and lactulose. European Journal of Clinical Nutrition (In the Press).Google Scholar
Würsch, P. & Roulet, Ph. (1982). Quantitative estimation of malto-oligosaccharides by high-performance thin-layer chromatography. Journal of Chromatography 244, 177182.CrossRefGoogle Scholar
Würsch, P., Welsch, C. & Arnaud, M. J. (1979). Metabolism of L-sorbose in the rat and the effect of the intestinal microflora on its utilisation both in the rat and in the human. Nutrition and Metabolism 23, 145155.CrossRefGoogle ScholarPubMed
Zanolo, G. & Giachetti, C. (1987). 14C-maltitol,14C-sorbitol, 14C-glucose. Metabolic utilization in the rat. Internal report of Istituto di Ricerche Biomediche ‘Antoine Marxer’. Ivrea, Italy: Istituto di Ricerche Biomediche Antoine Marxer.Google Scholar
Ziesenitz, S. C. & Siebert, G. (1987). The metabolism and utilization of polyols and other bulk sweeteners compared with sugar. In Developments in Sweeteners, vol. 3, pp. 109149 [Grenby, T. H., editor]. Barking, Essex: Elsevier Applied Science Publishers.Google Scholar