Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T06:52:14.488Z Has data issue: false hasContentIssue false

Microbial protein synthesis in cattle given roughage–concentrate and all-concentrate diets: the use of 2,6-diaminopimelic acid, 2-aminoethylphosphonic acid and 35S as markers

Published online by Cambridge University Press:  09 March 2007

F. G. Whitelaw
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
J. Margaret Eadie
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
L. A. Bruce
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
W. J. Shand
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Three steers, each fitted with a rumen cannula and a re-entrant cannula in the proximal duodenum, were offered diets consisting of a barley-based concentrate and chopped hay at a daily intake of 61 g/kg live weight0-75 given in three. equal meals. The ratio, concentrate: hay was changed from 50: 50 to 90: 10 and then to 100: O in successive periods of 12–18 weeks and the flow and composition of digesta at the duodenum was measured over 48-h periods on each dietary treatment.

2. Samples of bacteria and protozoa were separated from rumen contents and the proportions of bacterial and protozoal nitrogen (N) in duodenal digesta were estimated using 2, ddiaminopimelic acid (DAPA) and 2- aminoethylphosphonic acid (AEP) as markers. On separate occasions, radioactive sulphur (35S) was infused into the rumen for 48 h and digesta collected over the final 24 h; the specific radioactivity of S in microbial and digesta fractions was used to estimate the proportions of microbial N.

3. 35S gave reproducible and apparently reliable estimates of microbial protein formation: the proportion of microbial N in digesta was significantly higher (P < 0.05) for the 50:50 diet than for the other treatments but the energetic efficiency of microbial protein formation did not differ significantly between diets.

4. Estimatesof bacterial N based on DAPA concentrations were highly variable and frequently impossibly high. It is suggested that many of the anomalous values were the result of non-representative sampling of the rumen microbial population and that this is particularly likely to occur when conditions within the rumen are unstable. AEP was found to be unsuitable as a marker for rumen protozoa as considerable concentrations of this substance were found also in rumen bacteria.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

Abou Akkada, A. R. & Howard, B. H. (1960). Biochemical Journal 76, 445451.CrossRefGoogle Scholar
Abou akkada, A. R., Messmer, D. A., Fina, L. R. & Bartley, E. E. (1968). Journal of Dairy Science 51, 7881.CrossRefGoogle Scholar
Agricultural Research Council (1980). Nutrient Requirements of Ruminant Livestock. Farnham royal: Common-wealth Agricultural Bureaux.Google Scholar
Beever, D. E., Harrison, D. G., Thomson, D. J., Cammell, S. B. & Osbourn, D. F. (1974). British Journal of Nutrition 32, 99112.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J., Pfeffer, E. & Armstrong, D. G. (1971). British Journal of Nutrition 26, 123134.CrossRefGoogle Scholar
Bird, P. S. & Fountain, R. D. (1970). Analyst 95, 98102.CrossRefGoogle Scholar
Brown, G. F., Armstrong, D. G. & Macrae, J. C. (1968). British Veterinary Journal 124, 7882.CrossRefGoogle Scholar
Corbett, J. L., Greenhalgh, J. F. D., McDonald, I. & Florence, E. (1960). British Journal of Nutrition 14, 289299.CrossRefGoogle Scholar
Czerkawski, J. W. (1974). Journal of the Science of Food and Agriculture 25, 4555.Google Scholar
Czerkawski, J. W. (1978). Journal of dairy science 61, 12611273.CrossRefGoogle Scholar
Davidson, J., Mathieson, J. & Boyne, A. W. (1970). Analyst 95, 181193.Google Scholar
Demeyer, D. & Van nevel, C. J. (1976). Tracer Studies on Non-protein Nitrogen for Ruminants, vol. 3, pp. 6368.Vienna: Iaea.Google Scholar
Dufva, G. S., Bartley, E. E., Arambel, M. J., Nagaraja, T. G., Dennis, S. M., Galitzer, S. J. & Dayton, A. D. (1982). Journal of Dairy science 65, 17541759.CrossRefGoogle Scholar
Eadie, J. M. (1967). Journal of General Microbiology 49, 175194.CrossRefGoogle Scholar
Eadie, J. M., Hyldgaard-jensen, J., Mann, S. O., Reid, R. S. & Whitelaw, F. G. (1970). British Journal of Nutrition 24, 157177.CrossRefGoogle Scholar
Eadie, J. M. & Oxford, A. E. (1955). Journal of General Microbiology 1, 298310.Google Scholar
El-shazly, K., Nour, A. M. & Abou akkada, A. R. (1975). Analyst 100, 263268.CrossRefGoogle Scholar
Fawcett, J. K. & Scott, J. E. (1960). Journal of Clinical Pathology 13, 156159.CrossRefGoogle Scholar
Fell, B. F., Kay, M., Whitelaw, F. G. & Boyne, R. (1968). Research in Veterinary Science 9, 458466.CrossRefGoogle Scholar
Hagemeister, H. (1975). Keiler Milchwirtschafiliche Forschungsberichte 27, 347354.Google Scholar
Harmeyer, H., Holler, H., Martens, J. & von grabe, C. (1976). Tracer Studies on Non-protein Nitrogen for ruminants, vol. 3, pp. 6880. Vienna: Iaea.Google Scholar
Harrison, D. G., Beever, D. E. & Osbourn, D. F. (1979). British Journal of Nutrition 41, 521527.CrossRefGoogle Scholar
Hume, I. D. (1974). Australian Journal of Agricultural Research 25, 155165.CrossRefGoogle Scholar
Hutton, K., Bailey, F. J. & Annison, E. F. (1971). British Journal of Nutrition 25, 165173.CrossRefGoogle Scholar
Hyden, S. (1961). Kungliga Lantbrukhogskolans Annaler 27, 5179.Google Scholar
Ibrahim, E. A., Ingalls, J. R. & Bragg, D. B. (1970). Canadian Journal of Animal Science 50, 397400.Google Scholar
Kennedy, P. M. & Milligan, L. P. (1978). British Journal of Nutrition 39, 105117.CrossRefGoogle Scholar
Leng, R. A. (1982). British Journal of Nutrition 48, 399415.CrossRefGoogle Scholar
Ling, J. R. & Buttery, P. J. (1978). British Journal of Nutrition 39, 165179.Google Scholar
McKenzie, J. D. & Kay, R. N. B. (1968). Journal of Science Technology 14, 1516.Google Scholar
Malawar, S. J. & Powell, D. P. (1967). Gastroenterology 53, 250256.CrossRefGoogle Scholar
Nikolic, J. A. & Jovanovic, M. (1973). Journal of Agricultural Science, Cambridge 81, 17.CrossRefGoogle Scholar
Preston, T. R. (1963). Veterinary Record 75, 13991402.Google Scholar
Smith, R. H. (1975). In Digestion and Metabolism in the Ruminant, pp. 399415. [McDonald, I. W. and Warner, A. C. I., editors. ]. Sydney: University of new england.Google Scholar
Smith, R. H., McAllan, A. B., Hewitt, D. & Lewis, P. E. (1978). Journal of Agricultural Science, Cambridge 30, 557568.CrossRefGoogle Scholar
Steinhour, W. D., Stokes, M. R., Clarke, J. H., Rogers, J. A., Davis, C. L. & Nelson, D. R. (1982). British Journal of Nutrition 48, 417431.CrossRefGoogle Scholar
Stern, M. D. & Hoover, W. H. (1979). Journal of Animal Science 49, 15901603.CrossRefGoogle Scholar
Tamminga, S. (1978). In Ruminant Digestion and Feed Evaluation, pp. 51513 [Osbourn, D. F., Beever, D. E. and Thomson, D. J., editors]. London: Agricultural Research Council.Google Scholar
Walker, D. J. & Nader, C. J. (1975). Australian Journal of Agricultural Research 26, 689698.Google Scholar
Weller, R. A. & Pilgrim, A. F. (1974). British Journal of Nutrition 32, 341351.CrossRefGoogle Scholar
Wenham, G. & Wyburn, R. S. (1980). Journal of Agricultural Science, Cambridge 95, 539546.Google Scholar
Whitelaw, F. G., Eadie, J. M., Mann, S. O. & Reid, R. S. (1972). British Journal of Nutrition 27, 425437.CrossRefGoogle Scholar
Whitelaw, F. G., Hyldgaard-jensen, J., Reid, R. S. & Kay, M. G. (1970). British Journal of Nutrition 24, 179195.Google Scholar