Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T06:55:06.912Z Has data issue: false hasContentIssue false

Modifications to swede (Brassica napus L.) anterior to the terminal ileum of pigs: some implications for the analysis of dietary fibre

Published online by Cambridge University Press:  09 March 2007

P. Millard
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
A. Chesson
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The degradation of a swede (Brussica nupus L., cv. Danestone) diet anterior to the terminal ileum was studied in two pigs fitted with T-shaped cannulas 150 mm before the ileo-caecal junction. Digestibility was calculated with reference to chromic oxide and polyethylene glycol.

2. In addition to the total loss of free glucose and fructose, there were substantial modifications to cell-wall material recovered in digesta. These included the apparent loss of 46–50% of uronic acid residues, 72–78% of phenolic material and 10–24% of cellulose initially present in the feed, and a partial solubilization of some hemicellulose components.

3. Since ‘fibre’ recovered at the terminal ileum differed in a number of important respects from ingested fibre, a number of methods for the analysis of dietary fibre were examined to establish (1) the extent to which analysis of feed represented material recovered at the terminal ileum and (2) whether such methods could be applied directly to digesta samples. Results were compared with a complete analysis of water-soluble (620 g/kg dry matter) and water-insoluble (380 g/kg dry matter) fractions of feed.

4. Chemical fractionation techniques gave more reliable quantitative estimates of fibre than in vitro enzymic digestion methods which overestimated fibre. Acid- and neutral-detergent methods both gave too low an estimate of fibre. As none of the methods could allow for the loss of components (particularly pectic polysaccharides) found by sampling at the terminal ileum, none gave an accurate qualitative or quantitative representation of fibre at this point in the gut.

5. It is suggested that, as vegetable fibre recovered at the terminal ileum has already undergone partial hydrolysis, a more dynamic model of dietary fibre, in which the action of gut micro-organisms is considered, may be required to establish possible physiological roles of fibre or fibre components in the digestive tract. Recovery of digesta from sites of interest may be the only way of reliably estimating fibre or specific fibre components at different levels of the gut. This approach to dietary fibre may be impractical when applied directly to humans but the digestive tract of the pig may be a suitable alternative model.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

REFERENCES

Argenzio, R. A. & Southworth, M. (1975). American Journal of Physiology 228, 454460.CrossRefGoogle Scholar
Association of Official Agricultural Chemists (1965). Official Methods of Analysis. Washington DC: Association of Official Agricultural Chemists.Google Scholar
Bacon, J. S. D. & Gordon, A. H. (1980). Journal of Agricultural Science, Cambridge 94, 361367.CrossRefGoogle Scholar
Beever, D. E., Kellaway, R. C., Thomson, D. J., MacRae, J. C., Evans, C. C. & Wallace, A. S. (1978). Journal of Agricultural Science, Cambridge 90, 157163.CrossRefGoogle Scholar
Bhat, P., Shantatumari, S., Rajan, D., Mathan, V. I., Kapadia, C. R., Swarnabi, C. & Baker, S. J. (1972). Gastroenterology 62, 1121.CrossRefGoogle Scholar
Blakeney, A. B., Harris, P. J., Henry, R. J. & Stone, B. A. (1983). Carbohydrate Research 113, 291299.CrossRefGoogle Scholar
Burkitt, P. P. & Trowell, H. C. (1975). Refined Carbohydrate Foods and Diseases. London: Academic Press.Google Scholar
Chen, W. L. & Anderson, J. W. (1981). American Journal of Clinical Nutrition 34, 10771082.CrossRefGoogle Scholar
Clemens, E. R., Stevens, C. E. & Southworth, M. (1975). Journal of Nutrition 105, 759768.CrossRefGoogle Scholar
Conway, E. J. (1957). Microdiffusion Analysis and Volumetric Error. London: Crosby Lockwood.Google Scholar
Cummings, J. H. (1981). In Nutrition and Health: a Perspective, pp. 3548 [Turner, M. R., editor]. London: MTP Press Ltd.Google Scholar
Dovell, C. J. & Harris, N. D. (1982). Journal of the Science of Food and Agriculture 33, 185193.CrossRefGoogle Scholar
Drasar, B. S. & Hill, M. J. (1974). Human Intestinal Flora. London: Academic Press.Google Scholar
Friend, D. W., Cunningham, H. M. & Nicholson, J. W. G. (1963 a). Canadian Journal of Animal Science 43, 174181.CrossRefGoogle Scholar
Friend, D. W., Cunningham, H. M. & Nicholson, J. W. G. (1963 b). Canadian Journal of Animal Science 43, 156168.CrossRefGoogle Scholar
Goering, H. K. & Van soest, P. J. (1970). Forage Fiber Analyses. US Department of Agriculture. Agricultural Handbook no. 379. Washington DC: US Department of Agriculture.Google Scholar
Hellendoorn, E. W., Nordohoff, M. G. & Shagman, J. (1975). Journal of the Science of Food and Agriculture 26, 14611468.CrossRefGoogle Scholar
Hesford, F. & Buhrer, M. (1978). Clinica Chemica Acta 82, 225228.CrossRefGoogle Scholar
Holloway, W. D., Tasman-Jones, C. & Maher, K. (1983). American Journal of Clinical Nutrition 37, 253255.CrossRefGoogle Scholar
Keys, J. E. & DeBarthe, J. V. (1974). Journal of Agricultural Science, Cambridge 39, 5356.Google Scholar
Kintner, P. K. & Van Baren, J. P. (1982). Journal of Food Science 47, 756759, 764.CrossRefGoogle Scholar
Livingstone, R. M., Baird, B. A., Atkinson, T. & Crofts, R. M. J. (1980). Journal of Agricultural Science, Cambridge 94, 399405.CrossRefGoogle Scholar
Lomax, J. A. & Conchie, J. C. (1982). Journal of Chromatography 236, 385394.CrossRefGoogle Scholar
Lomax, J. A., Gordon, A. H. & Chesson, A. (1983). Carbohydrate Research 122, 1122.CrossRefGoogle Scholar
Malawar, S. J. & Powell, D. W. (1967). Gastroenterology 53, 250256.CrossRefGoogle Scholar
Mason, V. C. & Just, A. (1976). Zeitschrift für Tierphysiologie, Tierenährung und Futtermittelkunde 36, 301310.CrossRefGoogle Scholar
Morrison, I. M. (1972). Journal of the Science of Food and Agriculture 23, 455463.CrossRefGoogle Scholar
Read, S. M. & Northcote, D. M. (1981). Analytical Biochemistry 116, 5364.CrossRefGoogle Scholar
Sambrook, I. E. (1979). British Journal of Nutrition 42, 279287.CrossRefGoogle Scholar
Sandberg, A.-S. (1982). Dietary Fibre – Determination and Physiological Effects. Göteborg, University of Göteborg, Sweden.Google Scholar
Schweizer, T. F. & Würsch, P. (1979). Journal of the Science of Food and Agriculture 30, 613619.CrossRefGoogle Scholar
Selvendran, R. R., Ring, S. G. & DuPont, M. S. (1979). Chemistry and Industry 225230.Google Scholar
Southgate, D. A. T. (1976). In Fiber in Human Nutrition, pp. 73107 [Spiller, G. A. and Amen, R. J., editors]. New York and London: Plenum Press.CrossRefGoogle Scholar
Spiller, G. A., Fassett-Cornelius, G. & Briggs, G. M. (1976). American Journal of Clinical Nutrition 29, 934935.CrossRefGoogle Scholar
Supelco Inc. (1975). Technical Bulletin 749D. Bellefonte: Supelco Inc.Google Scholar
Theander, O. & Åman, P. (1979 a). In Dietary Fibers: Chemistry and Nutrition, pp. 215244 [Inglett, G. E. and Falkehag, S. I., editors]. New York and London: Academic Press.CrossRefGoogle Scholar
Theander, O. & Åman, P. (1979 b). Swedish Journal of Agricultural Research 9, 97106.Google Scholar
Trowell, H., Southgate, D. A. T., Wolevar, T. M. S., Leeds, A. R., Gassull, M. A. & Henkins, D. J. A. (1976). Lancet i, 967.CrossRefGoogle Scholar
Updegraff, D. M. (1969). Analytical Biochemistry 32, 420424.CrossRefGoogle Scholar
Van Soest, P. J. (1963). Journal of the Association of Official Agricultural Chemists 46, 829835.Google Scholar
Van Soest, P. J., Feraci, J. & Foose, T. (1983). In Fibre in Human and Animal Nutrition, pp. 7580 [Wallace, G. and Bell, L., editors]. Wellington: Royal Society of New Zealand.Google Scholar
Van Soest, P. J. & Wine, R. H. (1967). Journal of the Association of Official Analytical Chemists 50, 5055.Google Scholar
Wenham, G. & Wyburn, R. S. (1980). Journal of Agricultural Science 95, 539546.CrossRefGoogle Scholar