Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T03:14:07.874Z Has data issue: false hasContentIssue false

Molecular mechanism of transcriptional control by nuclear vitamin receptors

Published online by Cambridge University Press:  09 March 2007

Shigeaki Kato*
Affiliation:
The Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan, CREST, Japan Science and Technology, 4–1–8 Honcho, Kawaguchishi, Saitama 332–0012, Japan
*
*Corresponding author: Shigeaki Kato, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan, tel +81 3 5841 8478, fax +81 3 5841 8477, email uskato@mail.ecc.u-tokyo.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nuclear receptors for vitamins A and D belong to the nuclear hormone receptor superfamily and act as ligand-inducible transcription factors. Therefore, most of the biological actions of vitamins A and D are now considered to be exerted through nuclear vitamin receptor-mediated gene expression. The vitamin A nuclear receptors compromise six members, three all-trans retinoic acid receptors (RARα, RARβ, RARγ) and three 9-cis retinoic acid receptors (RXRα, RXRβ, RXRγ) (Mangelsdorf et al. 1995). Unlike vitamin A receptors, only one member is identified for vitamin D. The present study investigating the vitamin D receptor function in gene expression in both cell culture and intact animals was undertaken to better understand the actions of the fat-soluble vitamin A and vitamin D at a molecular level.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2000

References

Bouillon, R, Okamura, H & Norman, W (1995) Structure-function relationships in the vitamin D endocrine system. Endocrinology Review 16, 200257.Google ScholarPubMed
Chen, S & DeLuca, F (1995) Cloning of the human 1α25-dihydroxyvitamin D-3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochimica et Biophysica Acta 1269, 19.Google Scholar
DeLuca, F (1986) The metabolism and functions of vitamin D. Advanced Experimental Medical Biology 196, 361375.CrossRefGoogle Scholar
Freedman, P (1999) Increasing the complexity of coactivation in nuclear receptor signaling. Cell 97, 58.CrossRefGoogle ScholarPubMed
Fu, GKD, Zhang, H, Bikle, D, Shackleton, L, Miller, L & Portale, A (1997) Cloning of human 25-hydroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Molecular Endocrinology 11, 19611970.Google Scholar
Haussler, R, Whitfield, K, Haussler, A, Hsieh, C, Thompson, D, Selznick, H, Dominguez, C & Jurutka, P (1998) The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. Journal of Bone and Mineral Research 13, 325349.CrossRefGoogle ScholarPubMed
Horlein, J, Naar, M, Heinzel, T, Torchia, J, Gloss, B, Kurokawa, R, Ryan, A, Kamei, Y, Soderstrom, M & Glass, K (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor corepressor. Nature 377, 397404.CrossRefGoogle Scholar
Hughes, R, Malloy, J, Kieback, G, Kesterson, A, Pike, W, Feldman, D & O'Malley, W (1988) Point mutations in the human vitamin D receptor associated with hypocalcemic rickets. Science 242, 17021705.CrossRefGoogle ScholarPubMed
Kastner, P, Mark, M & Chambon, P (1995) Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83, 859869.CrossRefGoogle ScholarPubMed
Kato, S, Yanagisawa, J, Murayama, A, Kitanaka, S & Takeyama, K (1998) The importance of 25-hydroxyvitamin D3 1α-hydroxylase gene in vitamin D-dependent rickets. Current Opinion in Nephrology Hypertension 7, 377383.CrossRefGoogle Scholar
Kitanaka, S, Takeyama, K, Murayama, A, Sato, T, Okumura, K, Nogami, M, Hasegawa, Y, Niimi, H, Yanagisawa, J, Tanaka, T & Kato, S (1998) Inactivating mutations in the human 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D-deficient rickets. New England Journal of Medicine 338, 653661.CrossRefGoogle Scholar
Kitanaka, S, Murayama, A, Sakaki, T, Inoue, K, Seino, Y, Fukumoto, S, Shima, M, Yukizane, S, Takayanagi, M, Niimi, H, Takeyama, K & Kato, S (1999) No enzyme activity of 25-hydroxyvitamin D3 1α-hydroxylase gene product in pseudovitamin D-deficiency rickets with mild clinical manifestation. The Journal of Clinical Endocrinology 84, 41114117.Google ScholarPubMed
Labuda, M, Morgan, K & Glorieux, H (1990) Mapping autosomal recessive vitamin D dependency type 1 to chromosomal 12q14 by linkage analysis. American Journal of Human Genetics 47, 2836.Google Scholar
Lanz, B, Mckenna, J, Onata, A, Albrecht, U, Wong, J, Tsai, Y, Tsai, J & O'Malley, W (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97, 1727.CrossRefGoogle Scholar
Mangelsdorf, J, Thummel, C, Beato, M, Herrlich, P, Schutz, G, Umesono, K, Blumberg, B, Kastner, P, Mark, M & Chambon, P (1995) The nuclear receptor superfamily: the second decade. Cell 83, 835839.CrossRefGoogle ScholarPubMed
Nagy, L, Kao, Y, Chakravarti, D, Lin, J, Hassig, A, Ayer, E, Schreiber LEvans, M (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373380.CrossRefGoogle ScholarPubMed
Rachez, C, Lemon, D, Suldan, Z, Bromleigh, V, Gamble, M, Naar, M, Erdjument-Bromage, H, Tempst, P & Freedman, P (1999) Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398, 824828.CrossRefGoogle ScholarPubMed
Sakaki, T, Sawada, N, Takeyama, K, Kato, S & Inouye, K (1999) Enzymatic properties of mouse 25-hydroxyvitamin D3 1α-hydroxylase expressed in Escherichia coli. European Journal of Biochemistry 259, 731738.CrossRefGoogle Scholar
Takeyama, K, Kitanaka, S, Sato, T, Kobori, M, Yanagisawa, J & Kato, S (1997) 25-Hydroxyvitamin D3 1α-hydroxlase and vitamin D synthesis. Science 277, 18271830.CrossRefGoogle ScholarPubMed
Walters, R (1992) Newly identified actions of the vitamin D endocrine system. Endocrinology Review 13, 719764.Google ScholarPubMed
Yanagisawa, J, Yanagi, Y, Masuhiro, Y, Suzawa, M, Watanabe, M, Kashiwagi, K, Toriyabe, T, Kawabata, M, Miyazono, K & Kato, S (1999) Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 283, 13171321.CrossRefGoogle ScholarPubMed
Yoshizawa, T, Handa, Y, Uemasu, Y, Takeda, S, Sekine, K, Yoshihara, Y, Kawakami, T, Arioka, K, Sato, H, Uchiyama, Y, Masushige, S, Fukamizu, A, Matsumoto, T & Kato, S (1997) Impaired bone formation and uterine hypoplasia with growth retardation after weaning in mice lacking the vitamin D receptor. Nature Genetics 16, 391396.CrossRefGoogle ScholarPubMed