Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T14:01:07.687Z Has data issue: false hasContentIssue false

Paradoxical effect of ethanol on liver lipogenesis in the genetically-obese Zucker rat

Published online by Cambridge University Press:  09 March 2007

C. Karsenty
Affiliation:
Département de Nutrition et des Maladies Métaboliques de I'Université de Nancy I et Unité de Recherches de Nutrition et Diététique de I'INSERM U.59, 40 rue Lionnois, F–54000 Nancy, France
M. Ulmer
Affiliation:
Département de Nutrition et des Maladies Métaboliques de I'Université de Nancy I et Unité de Recherches de Nutrition et Diététique de I'INSERM U.59, 40 rue Lionnois, F–54000 Nancy, France
F. Chanussot
Affiliation:
Département de Nutrition et des Maladies Métaboliques de I'Université de Nancy I et Unité de Recherches de Nutrition et Diététique de I'INSERM U.59, 40 rue Lionnois, F–54000 Nancy, France
R. Ratanasavanh
Affiliation:
Département de Nutrition et des Maladies Métaboliques de I'Université de Nancy I et Unité de Recherches de Nutrition et Diététique de I'INSERM U.59, 40 rue Lionnois, F–54000 Nancy, France
G. Debry
Affiliation:
Département de Nutrition et des Maladies Métaboliques de I'Université de Nancy I et Unité de Recherches de Nutrition et Diététique de I'INSERM U.59, 40 rue Lionnois, F–54000 Nancy, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Sixteen obese (fa/fa) Zucker rats, sixteen lean (Fa/-)Zucker rats and sixteen Wistar rats, all male rats aged 7–8 weeks, were given either a control (C) diet containing no ethanol or an ethanol (E) diet in which 36% of the energy was supplied by ethanol, for a period of 4 weeks.

2. The activities of glucose-6-phosphate dehydrogenase (EC 1.1.1.49), glucose-6-phosphatase (EC 3.1.3.9) and glycerol kinase (EC 2.7.1.30) and the glycogen content in the livers of obese (fa/fa)rats were lower in animals given diet E than in those given diet C. As a result, hepatic lipogenesis and fatty degeneration of the liver were reduced in obese (fa/fa) rats given diet E.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Anon. (1972). Zeitschrift für Klinische Chemie und Klinische Biochemie 10, 182192.Google Scholar
Anon. (1980). Lancet ii, 11171118.Google Scholar
Baraona, E. & Lieber, C. S. (1979). Journal of Lipid Research 20, 289315.CrossRefGoogle Scholar
Beaufay, H., Amar-Costesec, A., Feytmans, E., Thines-Sempoux, D., Wibo, M., Robi, M. & Berthet, J. (1974). Journal of Cell Biology 61, 188212.CrossRefGoogle Scholar
Belfiore, F. (editor) (1980). Enzyme Regulation and Metabolic Diseases pp. 145148. Basel: Karger.Google Scholar
Cederbaum, A. I. (1980). Mount Sinai Journal of Medicine 41, 317328.Google Scholar
Joly, J. G., Feinman, L., Ishii, H. & Lieber, C. S. (1973). Journal of Lipid Research 14, 337343.Google Scholar
Karsenty, C., Chanussot, F., Ulmer, M. & Debry, G. (1985). British Journal of Nutrition 54, 513.Google Scholar
Khodjet el Khil, R. (1976). Effets d'antiépileptiques et d'hypolipémiants sur le mêtabolisme hépatique de l'acide glucuronique. Thése d'Etat en Pharmacie, Nancy.Google Scholar
Kondrup, J., Bro, B., Dich, J., Grunnet, N. & Thieden, H. I. D. (1980). Laboratory Investigation 43, 182190.Google Scholar
Lamb, R. G. & Fallon, H. J. (1974). Biochimica Biophysica Acta 348, 179188.Google Scholar
Lazarow, P. B. (1978). Journal of Biological Chemistry 253, 15221528.Google Scholar
Löhr, G. W. & Waller, H. D. (1963). Methods of Enzymatic Analysis, pp. 744751 [Bergmeyer, H. U., editor]. London and New York: Academic Press.Google Scholar
Lowry, O.H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265 –275.Google Scholar
Mccune, S. A., Durant, P. J., Jenkins, P. A. & Harris, R. A. (1981). Metabolism 30, 11701178.CrossRefGoogle ScholarPubMed
Nikkila, E. A. & Ojala, K. (1963). Proceedings of the Society for Experimental Biology and Medicine 113, 814 –817.CrossRefGoogle Scholar
Pfleiderer, G. (1963). Methods of Enzymatic Analysis pp. 5962 [Bergmeyer, H. U., editor]. London and New York: Academic Press.Google Scholar
Pirola, R. C. & Lieber, C. S. (1972). Pharmacology 7, 185196.Google Scholar
Ratanasavanh, D., Lahrichia, M., Galteau, M. M. & Siest, G. (1982). Advances in Biochemical Pharmacology, 3rd ed., pp. 8792 [Siest, G. and Heusghem, C., editors]. Paris: Masson.Google Scholar
Savolainen, M. J., Hiltunen, J. K. & Hassinen, I. E. (1977). Biochemical Journal 164, 169177.CrossRefGoogle Scholar
Schirardin, H., Bach, A., Schaeffer, A., Bauer, M. & Weryha, A. (1979). Archives Internationales de Physiologie et de Biochimie 87, 275289.Google Scholar
Schmidt, E., Schmidt, F. W. & Wildhirt, E. (1958). Klinische Wochenschrift 36(4), 172176.CrossRefGoogle Scholar
Spydevold, S. O. & Greenbaum, A. L. (1978). European Journal of Biochemistry 89, 329339.CrossRefGoogle Scholar
sund, H. & Theorell, H. (1963). The Enzymes, vol. VII, 2nd ed., pp. 2583 [Boyer, P. D., Lardy, H., and Myrback, K., editors]. London and New York: Academic Press.Google Scholar
Szasz, G. (1969). Clinical Chemistry 15, 124136.CrossRefGoogle Scholar
Thomson, A. D., Rae, S. A. & Majumdar, S. K. (1980). Medical Consequences of Alcohol Abuse, pp. 113116, [Clark, P. M. S., and Kricka, L. J., editors]. New York: Ellis Horwood/John Wiley.Google Scholar
Thorner, J. W. & Paulus, H. (1973). The Enzymes, vol. III, 3rd ed., p. 487 [Boyer, P. D., editor]. London and New York: Academic Press.Google Scholar
Trinder, P. (1969). Annals of Clinical Biochemistry 6, 2427.Google Scholar
Triscari, J., Bryce, J. & Sullivan, A. C. (1980). Metabolism 29, 377385.Google Scholar
Triscari, J., Stern, J. S., Johnson, P. R. & Sullivan, A. C. (1979). Metabolism 28, 183189.CrossRefGoogle ScholarPubMed
Winston, G. W. & Reitz, R. C. (1979). Biochemical Pharmacology 28, 12491255.Google Scholar