Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T06:53:19.181Z Has data issue: false hasContentIssue false

Peroral xylitol increases the concentration levels of tissue iron in the rat

Published online by Cambridge University Press:  09 March 2007

Mauri M. Hämäläinen
Affiliation:
Department of Biochemistry, Institute of Dentistry, University of Turku, SF-20520 Turku 52, Finland
Kauko K. Mäkinen
Affiliation:
Department of Biochemistry, Institute of Dentistry, University of Turku, SF-20520 Turku 52, Finland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of xylitol feeding on the iron content of rat tissues was studied.

2. Adult male rats were fed on the basal diet containing (g/kg) 200 glucose, or 50 or 200 xylitol, or the same diet containing no added carbohydrates for 8 weeks. Each feeding group comprised nine animals.

3. Xylitol at 200 g/kg diet retarded the growth rate of the rats, whereas 200 g glucose/kg increased the weight gains compared with animals given no added carbohydrates.

4. Xylitol at 50 g/kg did not affect the tissue Fe concentrations, but 200 g xylitol/kg increased the Fe content of the livers, duodenum wall, spleen, bone marrow and serum.

5. Cadmium and lead contents of the livers were similar in all groups.

6. Xylitol–Fe complexes are suggested to be responsible for the increased Fe absorption during xylitol feeding.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

REFERENCES

Angyal, S. J. & Davies, K. P. (1971). Chemical Communications, 500501.CrossRefGoogle Scholar
Angyal, S. J., Greeves, D. & Mills, J. A. (1974). Australian Journal of Chemistry 27, 14471456.CrossRefGoogle Scholar
Angyal, S. J. & Mills, J. A. (1979). Australian Journal of Chemistry 32, 19932001.CrossRefGoogle Scholar
Bothwell, T. H. & Finch, C. A. (1962). Iron metabolism, p. 26. London: J. & A. Churchill Ltd.Google Scholar
Conrad, M. E. Jr & Crosby, W. H. (1963). Blood 22, 406415.CrossRefGoogle Scholar
Feldkamp, C. S., Watkins, R., Baginski, E. S. & Zak, B. (1977). Microchemical Journal 22, 335346.CrossRefGoogle Scholar
Hämäläinen, M. M. & Mäkinen, K. K. (1981). Journal of Nutrition 111, 107122.CrossRefGoogle Scholar
Herndon, J. F., Rice, E. G., Tucker, R. G., Van Loon, E. J. & Greenberg, S. M. (1958). Journal of Nutrition 64, 615623.CrossRefGoogle Scholar
Kieboom, A. P. G., Spoormaker, T., Sinnema, A., van der Toorn, J. M. & van Bekkum, H. (1975). Recueil des Travaux Chimiques du Pays-Bas 94, 5359.CrossRefGoogle Scholar
Lynch, S. R. & Cook, J. D. (1980). Annals of the New York Academy of Sciences 355, 3244.CrossRefGoogle Scholar
Mäkinen, K. K. (1978). Experientia Suppl. 15, 1160.Google Scholar
Morgan, E. H. (1974). In Iron in Biochemistry and Medicine, pp. 2971 [Jacobs, A. & Worwood, M., editors]. London: Academic Press.Google Scholar
Turnbull, A. (1974). In Iron in Biochemistry and Medicine, pp. 369403 [Jacobs, A. & Worwood, M., editors]. London: Academic Press.Google Scholar