Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T04:06:01.315Z Has data issue: false hasContentIssue false

Physical activity, body composition and bone density in ballet dancers

Published online by Cambridge University Press:  09 March 2007

Wouter D. Van Marken Lichtenbelt
Affiliation:
Department of Human Biology, University of Limburg, PO Box 616, 6200 MD Maastricht, The Netherlands
Mikael Fogelholm
Affiliation:
UKK-Institute, PO Box 30, FIN-33500, Tampere, Finland
Ramon Ottenheijm
Affiliation:
Department of Human Biology, University of Limburg, PO Box 616, 6200 MD Maastricht, The Netherlands
Klaas R. Westerterp
Affiliation:
Department of Human Biology, University of Limburg, PO Box 616, 6200 MD Maastricht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The main purpose of the present study was to examine factors that affect bone mineral density (BMD) in female ballet dancers. Training history, Ca intake, body composition, total body BMD (TBMD) and site-specific BMD, and bone mineral content were described in twenty-four female ballet dancers (mean age 22·6 (SD 4·5) years). Training history was determined by questionnaires, Ca intake by 7 d dietary record, BMD and bone mineral content by dual-energy X-ray absorptiometry (DXA), total body water by 2H dilution, extracellular water by bromide dilution, body fat by underwater weighing (UWW; two-component model), DXA, and the four-component (4C) model. Dancers had a significantly lower body mass index (BMI 18·9 (SD 1·0) kg/m2) than controls (21·3 (SD 19) kg/m2), with significantly lower percentage body fat (17·4 (SD 3·9) v. 24·4 (SD 5·1)) but comparable fat-free mass. Mean TBMD (1·147 (SD 0 ·069) g/cm2) was significantly higher (6 %) compared with that of a reference population. These high values could be attributed to the high BMD of legs and pelvis, the weight-bearing sites of the dancer's body. No relationship was found between age, start of ballet classes, period (years) of dancing, Ca intake, and BMD (total and site-specific). However, TBMD was positively related to BMI, and negatively related to the age of menarche. BMD of the legs was significantly related to daily period (h) of training. Depending on the method used the percentage body fat ranged from 16·4 (by DXA) to 18·3 by the 4C model. These differences were significantly related to the TBMD. Percentage body fat by the different methods was not significantly different, except for DXA and 4C model. The present study showed that, despite the factors that have a negative effect on BMD, such as low body mass and late menarche, BMD in female ballet dancers was relatively high. These high values were probably caused by high levels of weight-bearing physical activity.

Type
Bone density in ballet dancers
Copyright
Copyright © The Nutrition Society 1995

References

REFERENCES

Aloia, J. F., Vaswani, A. N., Yeh, J. K. & Cohn, S. H. (1988). Premenopausal bone mass is related to physical activity. Archives of Internal Medicine 148, 121123.CrossRefGoogle ScholarPubMed
Altman, D. G. & Bland, J. M. (1983). Measurement in medicine: the analysis of method comparison studies. The Statistician 32, 307317.CrossRefGoogle Scholar
American Psychiatric Association (1987). Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric Association.Google Scholar
Biller, B. M. K., Saxe, V., Henog, D. B., Rozenthal, D. I., Holzman, S. & Klibanski, A. (1989). Mechanisms of osteoporosis in adult adolescent women with anorexia nervosa. Journal of Clinical Endocrinology and Metabolism 68, 548554.CrossRefGoogle ScholarPubMed
Carter, D. R. & Orr, T. E. (1992). Skeletal development and bone functional adaptation. Journal of Bone Mineral Research 7, S389S395.CrossRefGoogle ScholarPubMed
Clarkson, P. M., Freedson, P. S., Keller, B., Carney, D. & Skrinar, M. (1985). Maximal oxygen uptake, nutritional patterns, and body composition of adolescent female ballet dancers. Research Quarterly for Exercise and Sport 56, 180184.CrossRefGoogle Scholar
Deurenberg, P., Weststrate, J. A. & Seidell, J. C. (1991). Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. British Journal of Nutrition 65, 105114.CrossRefGoogle ScholarPubMed
Dixon, W. J. (1950). Analyses of extreme values. Annals of Mathematical Statistics 21, 488506.CrossRefGoogle Scholar
Frusztajer, N. T., Dhuper, S., Warren, M. P., Brooks, G. J. & Fox, R. P. (1990). Nutrition and the incidence of stress fractures in ballet dancers. American Journal of Clinical Nutrition 51, 779783.CrossRefGoogle ScholarPubMed
Fuller, N. J., Laskey, M. A. & Elia, M. (1992). Assessment of the composition of major body regions by dual-energy X-ray absorptiometry (DEXA), with special reference to limb muscle mass. Clinical Physiology 12, 253266.CrossRefGoogle ScholarPubMed
Halioua, L. & Anderson, J. J. (1989). Lifetime calcium intake and physical activity habits: independent and combined effects on the radial bone of healthy premenopausal Caucasian women. American Journal of Clinical Nutrition 49, 534541.CrossRefGoogle ScholarPubMed
Heinonen, A., Oja, P., Kannus, P., Sievanen, H., Manttari, A. & Vuori, I. (1993). Bone mineral density of female athletes in different sports. Bone and Mineral 23, 114.CrossRefGoogle ScholarPubMed
Hergenroeder, A. C., Fiorotto, M. L. & Klish, W. J. (1991). Body composition in ballet dancers measured by total body electrical conductivity. Medicine Science Sports and Exercise 23, 528533.CrossRefGoogle ScholarPubMed
Holderness, C. C., Brooks, G. J. & Warren, M. P. (1994). Eating disorders and substance use: a dancing vs a nondancing population. Medicine Science Sports and Exercise 26, 297302.CrossRefGoogle Scholar
Jaffe, R. B. & Dell'Aqua, S. (1985). The Endocrine Physiology of Pregnancy and the Peripartal Period. New York: Raven Press.Google Scholar
Johansson, A. G., Forslund, A., Sjodin, A., Mallmin, H., Hambraeus, L. & Ljunghall, S. (1993). Determination of body composition - a comparison of dual-energy X-ray absorptiometry and hydrodensitometry. American Journal of Clinical Nutrition 57, 323326.CrossRefGoogle ScholarPubMed
Kanders, B., Dempster, D. W. & Lindsay, R. (1988). Interaction of calcium nutrition and physical activity on bone mass in young women. Journal of Bone Mineral Research 3, 145149.CrossRefGoogle Scholar
Karlsson, M. K., Johnell, O. & Obrant, K. J. (1993). Bone mineral density in professional ballet dancers. Bone and Mineral 21, 163169.CrossRefGoogle ScholarPubMed
Kirkendall, D. T. & Calabrese., L. H. (1983). Phvsiological aspects of dance. Clinics in Sports Medicine 2. 525537.CrossRefGoogle ScholarPubMed
Kommissie, UCV (1994). Uitgebreide voedingsmiddelen tabel. Den Haag: Voorlichtingsbureau voor de voeding.Google Scholar
Lohman, T. G. (1992). Advances in Body Composition Assessment. Champaign, III.: Human Kinetics Publishers.Google Scholar
Lunar Corporation (1993). DPX-L Software Version 1·3z. Medicine, Wis.: Lunar Corporation.Google Scholar
McCulloch, R. G., Bailey, D. A., Houston, C. S. & Dodd, B. L. (1990). Effects of physical activity, dietary calcium intake and selected lifestyle factors on bone density in young women. Canadian Medical Association Journal 142, 221227.Google Scholar
Mazess, R. B. & Barden, H. S. (1991). Bone density in premenopausal women: effects of age, dietary intake, physical activity, smoking, and birth-control pills. American Journal of Clinical Nutrition 53, 132142.CrossRefGoogle ScholarPubMed
Mazess, R. B., Barden, H. S., Bisek, J. P. & Hanson, J. (1990). Dual-energy X-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. American Journal of Clinical Nutrition 51, 11061112.CrossRefGoogle ScholarPubMed
Miller, M. E., Cosgriff, J. M. & Forbes, G. B. (1989). Bromide space determination using anion-exchange chromatography for measurement of bromide. American Journal of Clinical Nutrition 50, 168171.CrossRefGoogle ScholarPubMed
Pritchard, J. E., Nowson, C. A., Strauss, B. J., Carlson, J. S., Kaymakci, B. & Wark, J. D. (1993). Evaluation dual energy X-ray absorptiometry as a method of measurement of body fat. European Journal of Clinical Nutrition 47, 216228.Google ScholarPubMed
Recker, R. R., Davies, K. M., Hinders, S. M., Heaney, R. P., Stegman, M. R. & Kimmel, D. B. (1992). Bone gain in young adult women. Journal of the American Medical Association 268, 24032408.CrossRefGoogle ScholarPubMed
Rigotti, N. A., Nussbaum, S. R, Herzog, D. B. & Neer, R. M. (1984). Osteoporosis in women with anorexia nervosa. New England Journal of Medicine 311, 16011606.CrossRefGoogle ScholarPubMed
Risser, W. L., Lee, E. J., LeBlanc, A., Poindexter, H. B., Risser, J. M. & Schneider, V. (1990). Bone density in eumenorrheic female college athletes. Medicine Science Sports and Exercise 22, 570574.CrossRefGoogle ScholarPubMed
Roede, M. J. & Wieringen, J. C. v. (1985). Growth diagrams 1980. Netherlands third nation-Wide survey. Tijdschrift voor sociale gezondheidszorg Suppl. 1985, 134.Google Scholar
Rosenthal, D. I., Mayo, S. W., Hayes, C. W., Khurana, J. S., Biller, B. M., Neer, R. M. & Klibanski, A. (1989). Age and bone mass in premenopausal women. Journal of Bone Mineral Research 4, 533538.CrossRefGoogle ScholarPubMed
Schoeller, D. A., Van Santen, E., Peterson, D. W., Dietz, W., Jaspen, J. & Klein, P. (1980). Total body water measurements in humans with 18O and 2H labelled water. American Journal of Clinical Nutrition 33,26862693.CrossRefGoogle Scholar
Shizgal, H. M. (1983). Body composition. Surgical Nutrition, pp. 317. Boston: Little, Brown and Co.Google Scholar
Siri, W. E. (1956). The gross composition of the body. Advances in Biological and Medical Physics 4, 239280.CrossRefGoogle ScholarPubMed
Snead, D. B., Birge, S. J. & Kohrt, W. M. (1993). Age-related differences in body composition by hydrodensitometry and dual-energy X-ray absorptiometry. Journal of Applied Physiology 74, 770775.CrossRefGoogle ScholarPubMed
Sowers, M. & Galuska, D. (1993). Epidemiology of bone mass in premenopausal women. Epidemiological Review 15, 374398.CrossRefGoogle ScholarPubMed
Sowers, M. R., Clark, M. K., Hollis, B., Wallace, R. B. & Jannausch, M. (1992 a). Radial bone mineral density in pre-and perimenopausal women: a prospective study of rates and risk factors for loss. Journal of Bone Mineral Research 7, 647657.CrossRefGoogle ScholarPubMed
Sowers, M. R., Kshirsagar, A., Crutchfield, M. M. & Updike, S. (1992 b). Joint influence of fat and lean body composition compartments on femoral bone mineral density in premenopausal women. American Journal of Epidemiology 136, 257265.CrossRefGoogle ScholarPubMed
Suominen, H. (1993). Bone mineral density and long term exercise. An overview of cross-sectional athlete studies. Sports Medicine 16, 316330.CrossRefGoogle ScholarPubMed
Van Loan, M. D. & Matclin, P. L. (1992). Body composition assessment: dual-energy X-ray absorptiometry (DEXA) compared to reference methods. European Journal of Clinical Nutrition 46, 125130.Google ScholarPubMed
Warren, M. P. (1980). The effects of exercise on pubertal progression and reproductive function in girls. Journal of Clinical Endocrinology and Metabolism 51, 11501157.CrossRefGoogle ScholarPubMed
Warren, M. P., Brooks, G. J., Fox, R. P., Lancelot, C., Newman, D. & Hamilton, W. G. (1991). Lack of bone accretion and amenorrhea: evidence for a relative osteopenia in weight-bearing bones. Journal of Clinical Endocrinology and Metabolism 72, 847853.CrossRefGoogle ScholarPubMed
Warren, M. P., Brooks, G. J., Hamilton, L. H., Warren, L. F. & Hamilton, W. G. (1986 a). Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. New England Journal of Medicine 314, 13481353.CrossRefGoogle ScholarPubMed
Warren, M. P., Brooks, G. J., Hamilton, L. H., Warren, L. F. & Hamilton, W. G. (1986 b). Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea (Erratum). New England Journal of Medicine 315, 905.Google Scholar
Weir, J. B. (1949). New methods for calculating metabolic rate with special reference to protein metabolism. Journal of Physiology 109, 19.CrossRefGoogle ScholarPubMed
Westerterp, K. R., Meijer, G. A. L., Kester, A. D. M., Wouters, L. & ten Hoor, F. (1992). Fat-free mass as a function of fat mass and habitual activity level. International Journal of Sports Medicine 13, 163166.CrossRefGoogle ScholarPubMed
Withers, R. T., Smith, D. A., Chatterton, B. E., Schultz, C. G. & Gaffney, R. D. (1992). A comparison of four methods of estimating the body composition of male endurance athletes. European Journal of Clinical Nutrition 46, 773784.Google ScholarPubMed
Wolman, R. L., Faulman, L., Clark, P., Hesp, R. & Harries, M. G. (1991). Different training patterns and bone mineral density of the femoral shaft in elite, female athletes. Annals of the Rheumatic Diseases 50, 487489.CrossRefGoogle ScholarPubMed
Young, N., Formica, C., Szmukler, G. & Seeman, E. (1994). Bone density at weight-bearing and nonweight-bearing sites in ballet dancers: the effects of exercise, hypogonadism, and body weight. Journal of Clinical Endocrinology and Metabolism 78, 449454.Google ScholarPubMed