Published online by Cambridge University Press: 09 March 2007
Multi-frequency bioimpedance analysis (MFBIA) was used to determine the impedance, reactance and resistance of 103 lamb carcasses (17·1–34·2 kg) immediately after slaughter and evisceration. Carcasses were halved, frozen and one half subsequently homogenized and analysed for water, crude protein and fat content. Three measures of carcass length were obtained. Diagonal length between the electrodes (right side biceps femoris to left side of neck) explained a greater proportion of the variance in water mass than did estimates of spinal length and was selected for use in the index L2/Z to predict the mass of chemical components in the carcass. Use of impedance (Z) measured at the characteristic frequency (Zc) instead of 50 kHz (Z50) did not improve the power of the model to predict the mass of water, protein or fat in the carcass. While L2/Z50 explained a significant proportion of variation in the masses of body water (r2 0·64), protein (r2 0.34) and fat (r20·35), its inclusion in multi-variate indices offered small or no increases in predictive capacity when hot carcass weight (HCW) and a measure of rib fat-depth (GR) were present in the model. Optimized equations were able to account for 65–90% of the variance observed in the weight of chemical components in the carcass. It is concluded that single frequency impedance data do not provide better prediction of carcass composition than can be obtained from measures of HCW and GR. Indices of intracellular water mass derived from impedance at zero frequency and the characteristic frequency explained a similar proportion of the variance in carcass protein mass as did the index L2/Z50.