Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T11:43:52.185Z Has data issue: false hasContentIssue false

Problems in estimating the extent of coprophagy in the rat

Published online by Cambridge University Press:  09 March 2007

Gladys Fajardo
Affiliation:
Universität Hohenheim, Institut für Zoophysiologie, D 7000 Stuttgart 70, West Germany
H. Hörnicke
Affiliation:
Universität Hohenheim, Institut für Zoophysiologie, D 7000 Stuttgart 70, West Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The quantity of re-ingested faeces was calculated by comparing faecal dry matter of unrestricted rats and coprophagy-restricted rats after correcting for differences in food intake. Due to high day-to-day variations of produced and re-ingested faeces it was not possible to calculate precisely the extent of coprophagy of an individual rat at a particular day with this difference method. Reliable quantitative estimates require at least two rats and a collection period of 7 d. When fed on a nutritionally complete diet, rats re-ingested 0-11 % of their faeces. When fed on low-protein diets (66 g egg albumin/kg) or diets diluted with 200 g cellulose/kg, coprophagy was not significantly increased. A high re-ingestion rate (6–25 %) was observed with thiamin and pantothenic acid deficiencies. After re-ingestion of faeces had been prevented for 1 week, the amount of faeces re-ingested during the subsequent week without tail-cups was increased twofold. It is concluded that rats are able to regulate the amount of faeces eaten precisely according to their requirements.

Keywords

Type
Gastrointestinal Physiology, Digestion and Metabolism: Non-Ruminants
Copyright
Copyright © The Nutrition Society 1989

References

REFERENCES

Araja, H., Araja, J., Negrete, A. & Tagle, M.A. (1973). Coprofagía en ratas alimentadas con dietas de diferente valor proteico. Archivos Latinoamericanas de Nutrición 23, 485493.Google Scholar
Barnes, R.H. (1962). Nutritional implications of coprophagy. Nutrition Reviews 20, 289291.CrossRefGoogle ScholarPubMed
Björnhag, G. & Sjöblom, L. (1977). Demonstration of coprophagy in some rodents. Swedish Journal of Agricultural Research 7, 105114.Google Scholar
Chilcott, M.J. (1984). Coprophagy in the common ringtail possum Pseudocheirus peregrinus (Marsupialia: Petauridae). Australian Mammalogy 7, 107110.CrossRefGoogle Scholar
Fajardo, G. (1987). Methodische Untersuchungen über das Koprophagie-Ausmaβ bei Ratten und seine Beeinflussung durch verschiedenen Diäten. Dissertation, Universität Hohenheim, Stuttgart.Google Scholar
Giovanetti, P.M. (1982). Effect of coprophagy on nutrition. Nutrition Research 2, 335349.CrossRefGoogle Scholar
Giovanetti, P.M., Stothers, S.C. & Parker, R.J. (1970). Coprophagy prevention and availability of amino-acids in wheat for the growing rat. Canadian Journal of Animal Science 50, 269277.Google Scholar
Hörnicke, H. & Björnhag, G. (1980). Coprophagy and related strategies of digesta utilization. In Digestive Physiology and Metabolism in Ruminants, pp. 707730 [Ruckebusch, Y. & Thivend, P., editors]. Lancaster: MTP Press Ltd.CrossRefGoogle Scholar
Hötzel, D. & Barnes, R. (1966). Contributions of the intestinal microflora to the nutrition of the host. Vitamins and Hormones 24, 115171.Google Scholar
Kenagy, G.J. & Hoyt, D.F. (1980). Reingestion of feces in rodents and its daily rhythmicity. Oecologia 44, 403409.CrossRefGoogle Scholar
Mameesh, M.S. & Johnson, B.C. (1959). Production of dietary vitamin K deficiency in the rat. Proceedings of the Society for Experimental Biology and Medicine 101, 467468.Google Scholar
Mameesh, M.S., Webb, R.E., Norton, H.W. & Johnson, B.C. (1959). The role of coprophagy in the availability of vitamins synthetised in the intestinal tract with antibiotic feeding. Journal of Nutrition 69, 8184.Google Scholar
Neale, R.J. (1982). Coprophagy in iron-deficient rats. Laboratory Animals 16, 204207.CrossRefGoogle ScholarPubMed
Osborne, T.B. & Mendel, L.B. (1911). Feeding experiments with isolated food substances. Carnegie Institution of Washington, Publication no. 156.Google Scholar
Roscoe, M.H. (1931). The effect of coprophagy in rats deprived of the vitamin B complex. Biochemical Journal 25, 20562067.CrossRefGoogle ScholarPubMed
Scheuermann, S.E. & Lantzsch, H.-J. (1982 a). Zur Abhängigkeit verschiedener Parameter des Zinkstoffwechsels vom Zinkausgangsstatus. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 48, 224231.CrossRefGoogle Scholar
Scheuermann, S.E. & Lantzsch, H.J. (1982 b). An improved fecal trap to prevent coprophagy in rats. Zeitschrift für Versuchstierkunde 24, 291293.Google ScholarPubMed
Schulze, J. & Haenel, H. (1969). Beziehungen zwischen Koprophagie, Darmflora und Vitaminen. Zeitschrift für Versuchstierkunde 11, 190206.Google Scholar
Steffens, W. & Menke, K.H. (1964). Kobalt und Vitamin B-12-Stoffwechsel. III. Untersuchungen über die Koprophagie bei Küken nach Verabreichung von CoCl2. Atompraxis 10, 16.Google Scholar
Stillings, B.R. & Hackler, L.R. (1966). Effect of coprophagy on protein utilization in the rat. Journal of Nutrition 90, 1924.CrossRefGoogle ScholarPubMed
Tadayyon, B. & Lutwak, L. (1969). Role of coprophagy in utilization of triglycerides, calcium, magnesium and phosphorus in the rat. Journal of Nutrition 97, 243245.Google Scholar
Takahashi, K.W., Ebino, K.Y., Saito, T.R. & Imanichi, T. (1985). Strain difference in coprophagous behavior in laboratory mice. Zoological Science, Tokyo 2, 249256.Google Scholar
Thomas, R.L. & Roe, L.J. (1974). Coprophagy in laboratory animals: a preliminary study to assess potential influences of excreta ingestion on radionuclide excretion patterns. American Industrial Hygiene Association Journal 35, 741747.Google Scholar