Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T10:56:44.789Z Has data issue: false hasContentIssue false

Simulation of the dynamics of nitrogen metabolism in sheep

Published online by Cambridge University Press:  25 March 2008

A. Mazanov
Affiliation:
Department of Biochemistry and Nutrition, Faculty of Rural Science, The University of New England, Armidale, New South Wales 2351, Australia
J. V. Nolan
Affiliation:
Department of Biochemistry and Nutrition, Faculty of Rural Science, The University of New England, Armidale, New South Wales 2351, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The results of isotope tracer studies of the dynamics of nitrogen metabolism in mature sheep were used to construct a seven-pool mathematical model.

2. The model was extended to a nine-pool model, which incorporates lags describing the time taken for the passage of digesta through the gut of sheep.

3. Simulation studies using these models satisfactorily predicted results of independent experiments.

4. The dynamics of N metabolism in sheep appear to be best approximated by first-order kinetics; that is, many of the important N transport processes are substantially linear or concentration-dependent.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1976

References

Benyon, P. R. (1968). Simulation 11, 219.Google Scholar
Berman, M. (1963). J. theor. Biol. 4, 229.Google Scholar
Berman, M. (1969). FEBS Lett. 2, Suppl.S56Google Scholar
Berman, M. & Schoenfeld, R. (1956). J. appl. Phys. 27, 1361.CrossRefGoogle Scholar
Berman, M., Weiss, M. F. & Shahn, E. (1962). Biophys. J. 2, 289.CrossRefGoogle Scholar
Cocimano, M. R. & Leng, R. A. (1967). Br. J. Nutr. 21, 353.Google Scholar
Cooper, G. J. (1969). FEBS Lett. 2, Suppl.S22.Google Scholar
Downes, A. M., Reis, E. J., Sharry, L. F. & Tunks, D. A. (1970). Aust. J. biol. Sci. 23, 1077.Google Scholar
Egan, A. R. & Kellaway, R. C. (1971). Br. J. Nutr. 26, 335.Google Scholar
Gill, W. (1951). Proc. Camb. Phil. Soc. math. phys. Sci. 47, 96.Google Scholar
Hale, J. (1971). Functional Differential Equations. New York: Springer-Verlag.Google Scholar
Hearon, J. Z. (1963). Ann. N. Y. Acad. Sci. 108, 36.Google Scholar
Judson, G. J. & Leng, R. A. (1973). Br. J. Nutr. 29, 156.Google Scholar
Leibholz, J. (1969). J. Anim. Sci. 29, 628.Google Scholar
Lewis, T. R. & Emery, R. S. (1962). J. Dairy Sci. 45, 765.Google Scholar
McDonald, P., Edwards, R. A. & Greenhalgh, J. F. D. (1973). Animal Nutrition, 2nd ed., p. 432. Edinburgh: Oliver & Boyd.Google Scholar
McIntyre, K. H. (1970). Aust. J. agric. Res. 21, 501.CrossRefGoogle Scholar
McIntyre, K. H. & Williams, V. J. (1970). Aust. J. agric. Res. 21, 95.CrossRefGoogle Scholar
Mancini, P. & Pilo, A. (1970). Comput. biomed. Res. 3, I.Google Scholar
May, R. M. (1973). Stability and Complexity in Model Ecosystems. Princeton, USA: Princeton University Press.Google Scholar
Mazanov, A. (1973 a). J. envir. Mgmt 1, 229.Google Scholar
Mazanov, A. (1973 b). Aust. Comput. J. 5, 74.Google Scholar
Mazanov, A. (1976). J. theor. Biol. (In the Press.)Google Scholar
Muntz, Ch. (1936). Uber dem Approximationssatz von Weierstrass Mathematische Abhandlungen. Berlin: Springer-Verlag.Google Scholar
Nolan, J. V. (1971). Dynamics of protein metabolism in sheep. PhD Thesis, The University of New England, Australia.Google Scholar
Nolan, J. V., Cocimano, M. R. & Leng, R. A. (1970). Proc. Aust. Soc. Anim. Prod. 8, 22.Google Scholar
Nolan, J. V. & Leng, R. A. (1972). Br. J. Nutr. 27, 177.Google Scholar
Nolan, J. V.Norton, B. W. & Leng, R. A. (1976). Br. J. Nutr. 35, 127.CrossRefGoogle Scholar
Packett, E. V. & Groves, T. D. D. (1965). J. Anim. Sci. 24, 341Google Scholar
Panaretto, B. A. (1963). Aust. J. agric. Res. 13, 320.Google Scholar
Portugal, A. V. & Sutherland, T. M. (1966). Nature, Lond. 209, 510.Google Scholar
Ralston, A. (1960). In Mathematical Methods for Digital Computers, vol. 1, p. 95 [Ralston, A. and Wilf, H. S., editors]. New York: John Wiley & Sons Inc.Google Scholar
Ralston, A. (1965). A First Course in Numerical Analysis, p. 200. Tokyo: McGraw-Hill-Kogakusha.Google Scholar
Rescigno, A. & Segre, G. (1966). Drug and Tracer Kinetics. Waltham: Blaisedell.Google Scholar
Romanelli, M. J. (1960). In Mathematical Methods for Digital Computers, vol. 1, p. 110 [Ralston, A. and Wilf, H. S., editors]. New York: John Wiley & Sons Inc.Google Scholar
Runge, C. (1895). Math. Annln 46, 167.Google Scholar
Shipley, R. A. & Clarke, R. E. (1972). Tracer Methods for In Vitro Kinetics. Theory and Applications. London: Academic Press.Google Scholar
Steel, J. W. & Leng, R. A. (1973). Br. J. Nutr. 30, 451.Google Scholar
Wylie, C. R. Jr (1966). Advanced Engineering Mathematics, p. 477. Tokyo: Kogakusha.Google Scholar