Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T17:56:39.928Z Has data issue: false hasContentIssue false

The simultaneous estimation of the amounts of protozoal, bacterial and dietary nitrogen entering the duodenum of steers

Published online by Cambridge University Press:  09 March 2007

J. E. Cockburn
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, Berkshire RG2 9AT
A. P. Williams
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, Berkshire RG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Four steers were given straw and tapioca diets, twice daily, in a 4 x 4 Latin-square design. These diets, containing 4.2 g nitrogen/kg dry matter (DM), were further supplemented with either urea, decorticated groundnut meal (DCGM), untreated (UT) casein or formaldehyde-treated (FT) casein to give a total of 19.7 g N/kg DM and 10.5 MJ/kg DM daily.

2. Concurrent samples of rumen bacteria and protozoa and abomasal digesta were collected for each period of the experiment and the concentrations of 2-aminoethyl phosphonic acid (AEPA), diaminopimelic acid (DAPA), total nitrogen (TN), total phosphorus (TP), amino acids and hexosamines were determined in the dried preparations. The nature of the dietary supplements had little effect on the concentrations of most of these constituents or on the total protozoal numbers.

3. Abomasal digesta samples marked with polyethylene glycol (PEG) and chromic oxide for flow estimation were collected over 24 h, and the proportions of protozoal-N, bacterial-N and microbial-N estimated simultaneously using the markers AEPA, DAPA and RNA respectively. These digesta-N components were also estimated using an amino acid profiling (AAP) method which gave, in addition, estimates of the dietary and endogenous components. For the diets containing casein, the proportion of dietary casein was estimated directly using casein-P as a marker.

4. Estimates of the respective mean proportions of microbial-N in abomasal digesta non-ammonia-N (NAN) for the diets containing urea, DCGM, UT casein or FT casein were: AEPA 0.56, 0.32, 0.27 and 0.16; DAPA 0.88, 0.70, 0.81 and 0.57; RNA 0.98, 0.85, 0.92 and 0.53.

5. Giving FT casein significantly (P < 0.001) increased the flow of casein-N at the abomasum and a significantly (P < 0.001) greater proportion of casein-N was found in abomasal NAN (0.51 v. 0.09) where FT rather than UT casein was given.

6. The AAP method gave results for the proportions of microbial- and dietary-N (where casein was given) which were, in general, slightly lower than those obtained using RNA and casein-P as markers. Agreement with estimates of bacterial protein (from DAPA) and of protozoal protein (from AEPA) was less satisfactory.

7. Comparisons of the various estimates of the proportions of microbial-N in abomasal digesta suggested that the results obtained for protozoal-N by AEPA were overestimates. AEPA was found in mixed rumen bacteria which may have accounted in part for these overestimates. However, AEPA was not detected in any of the dietary ingredients.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

Abou Akkada, A. R. & Howard, B. H. (1960). Biochemical Journal 76, 445451.CrossRefGoogle Scholar
Abou Akkada, A. R., Messmer, D. A., Fina, L. R. & Bartley, E. E. (1968). Journal of Dairy Science 51, 7881.Google Scholar
Agricultural Research Council (1980). In The Nutrient Requirements of Ruminant Livestock. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Bergen, W. G., Purser, D. B. & Cline, J. H. (1968 a). Journal of Dairy Science 51, 16981700.Google Scholar
Bergen, W. G., Purser, D. B. & Cline, J. H. (1968 b). Journal of Animal Science 27, 14971501.Google Scholar
Buttery, P. J. & Cole, D. J. A. (1977). Proceedings of the Nutrition Society 36, 211217.Google Scholar
Chamberlain, D. G., Thomas, P. C. & Wilson, A. G. (1976). Journal of the Science of Food and Agriculture 27, 231238.Google Scholar
Chow, R. B. & Kassel, B. (1968). Journal of Biological Chemistry 243, 17181724.Google Scholar
Cochran, W. G. & Cox, G. M. (1962). Experimental Designs, 2nd ed., p. 50. London and New York: John Wiley & Sons.Google Scholar
Cockburn, J. E. (1982). The measurement of protozoal protein in the digestive tract of ruminants. M. Phil. Thesis, University of Reading.Google Scholar
Cockburn, J. E. & Williams, A. P. (1982). Journal of Chromatography 249, 103110.Google Scholar
Coleman, G. S. (1975). In Digestion and Metabolism in the Ruminant, pp. 149164 [I., W., McDonald, and A. C. I. Warner, editors]. Armidale, NSW, Australia: University of New England Publishing Unit.Google Scholar
Cook, A. M., Daughton, C. G. & Alexander, M. (1978). Journal of Bacteriology 133, 8590.Google Scholar
Cottle, D. J. & Nolan, J. V. (1982). In Animal Production in Australia. Proceedings of the Australian Society of Animal Production, Vol. 14, pp. 588591. Oxford: Pergamon Press.Google Scholar
Czerkawski, J. W. (1974). Journal of the Science of Food and Agriculture 25, 4555.Google Scholar
Czerkawski, J. W. (1976). Journal of the Science of Food and Agriculture 27, 621632.Google Scholar
Dufva, G. S., Bartley, E. E., Arambel, M. J., Galitzer, S. J. & Dayton, A. D. (1982). Journal of Animal Science 54, 837840.Google Scholar
Eadie, J. M. & Gill, J. C. (1971). British Journal of Nutrition 26, 155167.Google Scholar
ElShazly, K. Shazly, K. & Naga, M. A. (1980). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 44, 18.Google Scholar
ElShazly, K. Shazly, K., Nour, A. M. & Abou Akkada, A. R. (1975). Analyst, London 100, 263268.Google Scholar
Evans, R. A., Axford, R. F. E. & Offer, N. W. (1975). Proceedings of the Nutrition Society 34, 65A.Google Scholar
Hagemeister, H. (1975). Kieler Milchwirtschaftliche Forschungsberichte 27, 347354.Google Scholar
Harrison, D. G. & McAllan, A. B. (1980). In Digestive Physiology and Metabolism in Ruminants, pp. 205226 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press Ltd.Google Scholar
Harrop, C. J. F. (1974). Journal of Agricultural Science, Cambridge 83, 249257.CrossRefGoogle Scholar
Hasegawa, S. & Tamari, M. (1976). Agricultural and Biological Chemistry 40, 20972098.Google Scholar
Hemsley, J. A., Reis, P. J. & Downes, A. M. (1973). Australian Journal of Biological Sciences 26, 961968.Google Scholar
Hoeller, H. & Harmeyer, T. (1964). Zentralblatt für Veterinärmedizin, Reihe A 3, 244245.Google Scholar
Horiguchi, M. (1971). In Analytical Chemistry of Phosphorus Compounds, pp. 703724 [M. Holman, editor]. London: John Wiley & Sons.Google Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Hutton, K., Bailey, F. J. & Annison, E. F. (1971). British Journal of Nutrition 25, 165173.Google Scholar
Ibrahim, E. A. & Ingalls, J. R. (1972). Journal of Dairy Science 55, 971978.Google Scholar
Ibrahim, E. A., Ingalls, J. R. & Bragg, D. B. (1970). Canadian Journal of Animal Science 50, 397400.Google Scholar
John, A. & Ulyatt, M. J. (1979). Proceedings of the Nutrition Society 38, 144A.Google Scholar
Jouany, J. P. (1978). Contribution à I'étude des protozaires ciliés du rumen: leur dynamique, leur rôle dans la digestion et leur interprêt pour le ruminant. PhD Thesis, University of Clermont-Ferrand.Google Scholar
Journet, M. & Verité, R. (1979). Annales de Recherches Vétérinaires 10, 303306.Google Scholar
Kandatsu, M. & Horiguchi, M. (1962). Agricultural and Biological Chemistry 26, 721722.CrossRefGoogle Scholar
Kaufmann, W. (1977). Proceedings of the 2nd EAAP Symposium on Protein Metabolism and Nutrition, publication no. 22, pp. 130132. Wageningen, The Netherlands: European Association of Animal Production.Google Scholar
Kirkpatrick, D. S. & Bishop, S. H. (1971). Analytical Chemistry 43, 17071709.Google Scholar
Krawielitzki, R., Piatkowski, B. & Kreienbring, F. (1978). Archiv für Tierernährung 28, 701708.Google Scholar
Kurihara, Y., Eadie, J. M., Hobson, P. N. & Mann, S. O. (1968). Journal of General Microbiology 51, 267288.Google Scholar
Lacoste, A., Cassaigne, A., Tamari, M. & Neuzil, E. (1976). Biochimie 58, 703712.Google Scholar
Landis, J. & Haselback, C. (1980). Proceedings of the 3rd EAAP Symposium on Protein Metabolism and Nutrition, publication no. 27, pp. 489495 [Oslage, H.J. and Rohr, K., editors]. Braunschweig, Fed. Rep. Germany: European Association of Animal Production.Google Scholar
Lindsay, J. R. & Hogan, J. P. (1972). Australian Journal of Agricultural Research 23, 321330.Google Scholar
Ling, J. R. & Buttery, P. J. (1978). British Journal of Nutrition 39, 165179.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1969). British Journal of Nutrition 23, 671682.Google Scholar
McAllan, A. B. & Smith, R. H. (1972). Proceedings of the Nutrition Society 31, 24A.Google Scholar
McAllan, A. B. & Smith, R. H. (1973). British Journal of Nutrition 29, 331345.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1983). British Journal of Nutrition 49, 119128.Google Scholar
McDonald, I. W. & Hall, R. J. (1957). Biochemical Journal 67, 400405.Google Scholar
MacGregor, C. A., Sniffen, C. J. & Hoover, W. H. (1978). Journal of Dairy Science 61, 566673.CrossRefGoogle Scholar
Mason, V. S., Bech-Andersen, S. & Rudemo, M. (1980). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 43, 146164.Google Scholar
Mason, V. S. & Palmer, R. (1971). Journal of Agricultural Science, Cambridge 76, 567572.Google Scholar
Mason, V. S. & White, F. (1971). Journal of Agricultural Science, Cambridge 71, 9198.CrossRefGoogle Scholar
Mathers, J. C., Thomas, R. J., Gray, N. A. M. & Johnson, I. L. (1979). Proceedings of the Nutrition Society 38, 122A.Google Scholar
Mercer, J. R., Allan, S. A. & Miller, E. L. (1980). British Journal of Nutrition 43, 421433.CrossRefGoogle Scholar
Merry, R. J. (1980). The use of dietary non-protein nitrogen compounds by the ruminant with particular emphasis on the glycosyl ureides. PhD Thesis, University of Reading.Google Scholar
Meyer, R. H., Bartley, E. E., Deyoe, C. W. & Colenbrander, V. F. (1967). Journal of Dairy Science 50, 13271332.CrossRefGoogle Scholar
Nikolić, A. & Jovanović, M. (1973). Journal of Agricultural Science, Cambridge 81, 17.Google Scholar
Nour, A. M., El Shazly, K., Abou Akkada, A. R., Naga, M. A. & Borhami, B. E. (1979). Alexandria Journal of Agricultural Research 27, 113120.Google Scholar
Offer, N. W., Axford, R. F. E. & Evans, R. A. (1978). British Journal of Nutrition 40, 3544.Google Scholar
Ørskov, E. R. & MacLeod, N. A. (1982). British Journal of Nutrition 47, 625636.Google Scholar
Pettipher, G. & Latham, M. J. (1979). Journal of General Microbiology 110, 2938.Google Scholar
Potter, E. L. & Dehority, B. A. (1973). Applied Microbiology 26, 692698.Google Scholar
Purser, D. B. & Buechler, S. M. (1966). Journal of Dairy Science 49, 8184.Google Scholar
Raghupati Sarma, G., Chandramouli, V. & Venkita Subramanian, T. A. (1970). Biochimica et Biophysica Acta 218, 561563.Google Scholar
Rimington, C. & Kay, H. D. (1926). Biochemical Journal 20, 777790.CrossRefGoogle Scholar
Roy, J. H. B., Balch, C. C., Miller, E. L., Ørskov, E. R. & Smith, R. H. (1977). Proceedings of the 2nd EAAP Symposium on Protein Metabolism and Nutrition, publication no. 22, pp. 126129. Wageningen, The Netherlands: European Association of Animal Production.Google Scholar
Satter, L. D. & Roffler, R. E. (1977). Journal of Dairy Science 58, 12191237.Google Scholar
Shimizu, H., Kakimoto, T., Nakajima, T., Kanazawa, A. & Sano, I. (1965). Nature 207, 1198.Google Scholar
Siddons, R. C., Beever, D. E., Nolan, J. V., McAllan, A. B. & MacRae, J. C. (1979). Annales de Recherches Vétérinaires 10, 286287.Google Scholar
Smith, R. H. (1975). In Digestion and Metabolism in the Ruminant, pp. 399415 [McDonald, I.W. and Warner, A. C. I., editors]. Armidale, NSW, Australia: University of New England Publishing Unit.Google Scholar
Smith, R. H. (1983). In Proceedings of the Sixth International Symposium on Amino Acids, Serock, Poland.Google Scholar
Smith, R. H. & McAllan, A. B. (1970). British Journal of Nutrition 24, 545556.Google Scholar
Smith, R. H. & McAllan, A. B. (1971). British Journal of Nutrition 25, 181190.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1974). British Journal of Nutrition 31, 2734.Google Scholar
Smith, R. H., McAllan, A. B., Hewitt, D. & Lewis, P. E. (1978). Journal of Agricultural Science, Cambridge 90, 557568.Google Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analytical Chemistry 30, 11901205.Google Scholar
Synge, R. L. M. (1953). Journal of General Micorobiology 9, 407409.Google Scholar
Tamari, M. (1979). Agricultural and Biological Chemistry 43, 651652.Google Scholar
Tamari, M. & Kametaka, M. (1973). Agricultural and Biological Chemistry 37, 933935.Google Scholar
Tas, M. V., Evans, R. A. & Axford, R. F. E. (1981). British Journal of Nutrition 45, 167174.Google Scholar
Technicon Instruments Corporation (1967). Technicon Method Sheet N-3b, Tarrytown, New York: Technicon Instruments Corporation.Google Scholar
Theurer, C. B. (1982). In Protein Requirements for Cattle: Symposium 1980, pp. 1022 [Warner, F. N., editors]. Stillwater, Oklahoma: Oklahoma State University.Google Scholar
Ulyatt, M. J., MacRae, J. C., Clark, R. T. J. & Pearce, P. D. (1975). Journal of Agricultural Science, Cambridge 84, 453458.Google Scholar
Valdez, R. E., Alvarez, F. J., Ferreiro, H. M., Guerra, F., Lopez, J., Priego, A., Blackburn, T. H., Leng, R. A. & Preston, T. R. (1977). Tropical Animal Production 2, 260272.Google Scholar
Wakita, M. & Hoshino, S. (1979). Japanese Journal of Zootechnical Science 50, 17.Google Scholar
Warner, A. C. I. (1962). Journal of General Microbiology 28, 119128.Google Scholar
Weller, R. A. (1957). Australian Journal of Biological Science 10, 384389.Google Scholar
Williams, A. P. (1974). Amino acid requirements of the young bovine. PhD Thesis, University of Reading.Google Scholar
Williams, A. P. & Smith, R. H. (1974). British Journal of Nutrition 32, 421433.Google Scholar
Williams, A. P. & Smith, R. H. (1976). British Journal of Nutrition 36, 199209.Google Scholar
Williams, P. P. & Dinusson, W. E. (1973). Journal of Animal Science 36, 588591.Google Scholar
Work, E. & Dewey, A. L. (1953). Journal of General Microbiology 9, 394409.Google Scholar