Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T07:45:06.942Z Has data issue: false hasContentIssue false

Study of magnesium bioavailability using stable isotopes and the inductively-coupled plasma mass spectrometry technique in the rat: single and double labelling approaches

Published online by Cambridge University Press:  09 March 2007

Charles Coudray
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Laboratoire Maladies Métaboliques et Micronutriments, INRA de Theix/Clermont-Ferrand, 63122 Saint Genès Champanelle, France
Denise Pepin
Affiliation:
Laboratoire d'hydrologie, Institut Louise Blanquet, Faculté de Pharmucie, Université d'Auvergne, 63000 Clermont-Ferrand, France
Jean Claude Tressol
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Laboratoire Maladies Métaboliques et Micronutriments, INRA de Theix/Clermont-Ferrand, 63122 Saint Genès Champanelle, France
Jacques Bellanger
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Laboratoire Maladies Métaboliques et Micronutriments, INRA de Theix/Clermont-Ferrand, 63122 Saint Genès Champanelle, France
Yves Rayssiguier
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Laboratoire Maladies Métaboliques et Micronutriments, INRA de Theix/Clermont-Ferrand, 63122 Saint Genès Champanelle, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present work aimed to investigate the feasibility of using stable isotopes and inductively-coupled plasma mass spectrometry (ICP/MS) to study Mg absorption in rats. Male Wistar rats, aged 7 weeks and weighing 180g, were used. They were fed on a semi-purified diet containing 1070mg Mg/kg, and had free access to feed and distilled water. In the first experiment, after a 16d adaptation period, two doses of enriched 25Mg (6 and 12mg) were administered by oral intubation, faeces and urine were collected daily and blood was sampled. Isotope ratios were determined by ICP/;MS. ‘True’ absorption values, using the faecal isotope data, were 0.63 and 0.56 in rats receiving 6 and 12mg 25Mg respectively, while apparent absorption was 0.50 for two successive periods of metabolic balance studies. Moreover, the oral isotope administration resulted in a measurable isotopic enrichment in plasma within hours which was still detectable on the third day following the isotope administration. In the second experiment, investigating the double labelling technique, similar rats were dosed Simultaneously with 5mg 26Mg orally (premixed with diet) and 0.29mg 25Mg intravenously. The calculated Mg true absorption values were very similar when calculated from blood or urine data (0.38) but were lower than that obtained from faecal data (0.50). The possible causes of such an unexpected difference and limits of the double labelling technique for Mg absorption are discussed here. Together these results indicate that although 25Mg and 26Mg isotopes have high natural abundance, the described methodology permits meaningful investigations of Mg bioavailability and metabolism

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Aikawa, J. K. (1981). Physiology of magnesium in man. In Magnesium: Its Biological Significance, pp. 4356 [Aikawa, J. K., editor]. Boca Raton: CRC Press Inc.Google Scholar
American Institute of Nutrition (1977). Report of the American Institute of Nutrition ad hoc committee on standards for nutritional studies. Journal of Nutrition 107, 13401348.CrossRefGoogle Scholar
Benech, H. & Grognet, J. M. (1995). Recent data on the evaluation of magnesium bioavailability in humans. Magnesium Research 8, 277284.Google ScholarPubMed
Brink, E. J., Dekker, P. R., Van Beresteijn, E. C. & Beynen, A. C. (1991). Inhibitory effect of dietary soybean proteins vs casein on magnesium absorption in rats. Journal of Nutrition 121, 13741381.CrossRefGoogle ScholarPubMed
Brink, E. J., Van den Berg, G. J., Van der Meer, R., Wolterbeek, H. Th., Dekker, P. R. & Beynen, A. C. (1992). Inhibitory effect of soybean protein vs. casein on apparent absorption of magnesium in rats is due to greater excretion of endogenous magnesium. Journal of Nutrition 122, 19101916.CrossRefGoogle ScholarPubMed
Cary, E. E., Wood, R. J. & Schwartz, R. (1990). Stable Mg isotopes as tracers using ICP/MS. Journal of Micronutrient Analysis 8, 1322.Google Scholar
Coudray, C., Bousset, C., Pepin, D., Tressol, J. C., Sominar, E. & Rayssiguier, Y. (1996). Study of magnesium, zinc and copper absorption using stable isotopes and inductively coupled plasma/mass spectrometry technique in the rats. European Academy of Nutritional Sciences meeting22–24 August 1996Copenhagen, Denmark.Google Scholar
Crews, H. M., Ducros, V., Eagles, J., Mellon, F. A., Kastenmayer, P., Luten, J. B. & McGaw, B. A. (1994). Mass spectrometric methods for studying nutrient mineral and trace element absorption and metabolism in humans using stable isotopes. Analyst 119, 24912514.CrossRefGoogle ScholarPubMed
De Bièvre, P. & Taylor, P. D. P. (1993). Table of isotopic composition of the elements. International Journal of Mass Spectrometry Ion Process 123, 149166.CrossRefGoogle Scholar
Durlach, J. (editor) (1988). Magnesium in Clinical Practice. London: John Libbey.Google Scholar
Gueux, E., Azais-Braesco, V., Bussière, L., Grolier, P., Mazur, A. & Rayssiguier, Y. (1995). Effect of magnesium deficiency on triacylglycerol-rich lipoprotein and tissue susceptibility to peroxidation in relation to vitamin E content. British Journal of Nutrition 74, 849856.Google ScholarPubMed
Hardwick, L. L., Jones, M. R., Brautbar, N. & Lee, D. B. N. (1990 a). Site and mechanism ofintestinal magnesium absorption. Minerals and Electrolyte Metabolism 16, 174180.Google Scholar
Hardwick, L. L., Jones, M. R., Buddington, R. K., Clemens, R. A. & Lee, D. B. (1990 b). Comparison of calcium and magnesium absorption, in vivo and in vitro studies. American Journal of Physiology 259, G720–G726.Google ScholarPubMed
Janghorbani, M. & Ting, B. T. G. (1990). Stable isotope methods for studies of mineral/trace element metabolism. Journal of Nutritional Biochemistry 1, 419.CrossRefGoogle ScholarPubMed
Kayne, L. H. & Lee, D. B. N. (1993). Intestinal magnesium absorption. Minerals and Electrolyte Metabolism 19, 210217.Google ScholarPubMed
Liu, Y. M., Neal, P., Ernst, J., Weaver, C., Richard, K., Smith, D. L. & Lemons, J. (1989). Absorption of calcium and magnesium from fortified human milk by very low birth weight infants. Pediatric Research 25, 496502.CrossRefGoogle ScholarPubMed
Mertz, W. (1987). Use and misuse of balance studies. Journal of Nutrition 117, 18111813.CrossRefGoogle ScholarPubMed
Phillips, J. D., Davies, R. J., Keighley, M. R. B. & Birch, N. J. (1991). Magnesium absorption in human ileum. Journal of American College of Nutrition 10, 200204.CrossRefGoogle ScholarPubMed
Quamme, G. A. (1993). Magnesium homeostasis and renal magnesium handling. Mineral Electrolyte Metabolism 19, 218225.Google ScholarPubMed
Rayssiguier, Y., Durlach, J., Gueux, E., Rock, E. & Mazur, A. (1993 a). Magnesium and ageing. I- Experimental data: importance of oxidative damage. Magnesium Research 6, 369378.Google ScholarPubMed
Rayssiguier, Y., Gueux, E., Bussiere, L., Durlach, J. & Mazur, A. (1993 b). Dietary magnesium affects susceptibility of lipoproteins and tissues to peroxidation in rats. Journal of American College of Nutrition 12, 133137.CrossRefGoogle ScholarPubMed
Sandström, B., Fairweather-Tait, S., Hurrell, R. & Van Dokkum, W. (1993). Methods for studying mineral and trace element absorption in humans using stable isotopes. Nutrition Research Review 6, 7195.CrossRefGoogle ScholarPubMed
Schuetk, S. A., Lashner, B. A. & Janghorbani, M. (1994). Bioavailability of magnesium diglycinate vs magnesium oxide in patients with ileal resection. Journal of Parenteral and Enteral Nutrition 18, 430435.CrossRefGoogle Scholar
Schuette, S., Vereault, D., Ting, B. T. G. & Janghorbani, M. (1988). Accurate measurement of stable isotopes of magnesium in biological materials with inductively coupled plasma mass spectrometry. Analyst 113, 18371842.CrossRefGoogle ScholarPubMed
Schuette, S., Ziegler, E. E., Nelson, S. E. & Janghorbani, M. (1990). Feasibility of using the stable isotope 25Mg to study Mg metabolism in infants. Pediatric Research 27, 3640.CrossRefGoogle ScholarPubMed
Schwartz, R. & Giesecke, C. C. (1979).Mass spectrometry of a volatile Mg chelate in the measurement of stable 26Mg when used as a tracer. Clinica Chimica Acta 97, 18.CrossRefGoogle ScholarPubMed
Schwartz, R., Spencer, H. & Wentworth, R. A. (1978). Measurement of magnesium absorption in man using stable 26Mg as a tracer. Clinica Chimica Acta 87, 265273.CrossRefGoogle ScholarPubMed
Sojka, J., Wastney, M., Abraham, S., Froese, S., Martin, B. & Weaver, C. (1996). Determination of magnesium kinetics using stable isotope tracers in adolescent girls. FASEB Journal Abstracts 10, A782.Google Scholar
Spencer, H., Fuller, H., Norris, C. & Williams, D. (1994). Effect of magnesium on the intestinal absorption of calcium in man. Journal of the American College of Nutrition 13, 485492.CrossRefGoogle ScholarPubMed
Stegmann, W. & Karbach, U. (1993). Plasma kinetics of magnesium and calcium stable isotope tracers in a human subject after simultaneous oral ingestion of 25Mg and 44Ca determined by thermal ionisation mass spectrometry. Biological Mass Spectrometry 22, 441446.CrossRefGoogle Scholar
Vanhoe, H. (1993). A review of the capabilities of ICP/MS for trace analysis in body fluids and tissues. Journal of Trace Element Electrolytes in Health and Disease 7, 131139.Google Scholar
Verbeek, M. J. F., Van Den Berg, G. J., Lemmens, A. G. & Beynen, A. C. (1993). High protein intake raises apparent but not true magnesium absorption in rats. Journal of Nutrition 123, 18801887.CrossRefGoogle Scholar
Yergey, A. (1996). Analytical instruments for stable isotopic tracers in mineral metabolism. Journal of Nutrition 126, 355S–316S.Google ScholarPubMed
Yergey, A. L., Vieira, N. E. & Covell, D. G. (1987). Direct measurement of dietary absorption using calcium isotopic tracers. Biomedical and Environemental Mass Spectrometry 14, 603607.CrossRefGoogle ScholarPubMed