Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T20:54:24.038Z Has data issue: false hasContentIssue false

A theoretical consideration of the effect of preventing rumen fermentation on the efficiency of utilization of dietary energy and protein in lambs

Published online by Cambridge University Press:  26 July 2012

J. L. Black
Affiliation:
School of Agriculture, University of Melbourne, Victoria, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of preventing rumen fermentation of feed on the utilization of energy and protein by growing lambs has been studied by theoretical means.

2. Initially, the differences in feed utilization resulting from microbial fermentation compared with digestion by host enzymes were estimated. It was assumed that a diet containing 85% of unspecified carbohydrate and 15% casein was placed directly into the rumen (ruminant lamb) or abomasum (non-ruminant lamb) of animals weighing 20 kg, and that in both instances the diet was completely digested. In the non-ruminant lamb from 39 to 45% more net energy was available for maintenance, and from 22 to 61% more net energywas available for production, than in the ruminant lamb. The smaller differences applied to concentrate diets and the larger differences to highly fibrous diets. When dietary protein was completely degraded by microbes approximately 50% less protein was absorbed from the small intestine in the ruminant lamb than in the non-ruminant lamb. It is suggested that this may significantly reduce tissue synthesis and growth in early-weaned lambs weighing less than 30 kg, but it may not limit growth in heavier animals.

3. Because part of the food of ruminants generally escapes fermentation and is digested by enzymes in the small intestine, and because part of the food of non-ruminants is fermented in the hind-gut, the estimates were adjusted accordingly. In this situation the utilization of digested energy in the non-ruminant lamb was from 30 to 45 % more efficient for maintenance and from 10 to 60 % more efficient for production than in the ruminant lamb. Some dietary proteins are so resistant to microbial degradation that a lower efficiency of utilization in the ruminant lamb when these proteins are given could only result from a limit in availability of energy.

4. Since ruminants digest crude fibre more efficiently than non-ruminants, it was calculated that the level of dietary crude fibre must exceed at least 22%, and in some instances 35%, of the dry matter before the ruminant digestive system results in a better utilization of dietary energy in lambs. Thus, many common feeding-stuffs would be more efficiently used by lambs if they by-passed the rumen. The possible limitations to the adoption of this procedure are discussed.

5. The present techniques available for reducing the degradation of food within the rumen are outlined. It is suggested that an improvement in food utilization in ruminants could be achieved by feeding fats or formaldehyde-treated fat-casein complexes in solid diets, or alternatively, by feeding liquid diets which activate the reticular groove.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1971

References

REFERENCES

Abgarowicz, F. (1948). Untersuchungen über den Einfluss des Ballastes in der Nahrung des Kaninchens. Dissertation: Eidgenossische Technische Hochschule, Zürich. Quoted by Eriksson, S. (1952).Google Scholar
Agricultural Research Council (1965). The Nutrient Requirements of Farm Livestock. No. 2. Ruminants. London: H. M. Stationery Office.Google Scholar
Andrews, R. P., Kay, M. & Ørskov, E. R. (1969). Anim. Prod. 11, 173.Google Scholar
Armstrong, D. G. (1965). In Physiology of Digestion in the Ruminant p. 272. [Dougherty, R. W., editor]. Washington: Butterworths.Google Scholar
Armstrong, D. G., Blaxter, K. L. & Graham, N. McC. (1957). Br. J. Nutr. 11, 392.Google Scholar
Armstrong, D. G., Blaxter, K. L. & Graham, N. McC. (1960). Proc. Nutr. Soc. 19, xxxi.Google Scholar
Armstrong, D. G., Blaxter, K. L., Graham, N. McC. & Wainman, F. W. (1958). Br. J. Nutr. 12, 177.CrossRefGoogle Scholar
Askevold, F. (1956). Scand. J. clin. Lab. Invest. 8, 87.Google Scholar
Baker, F., Nasr, H., Morrice, F. & Bruce, J. (1950). J. Path. Bact. 62, 617.CrossRefGoogle Scholar
Balch, C. C. & Campling, R. C. (1965). In Physiology of Digestion in the Ruminant p. 108 [Dougherty, R. W., editor]. Washington: Butterworths.Google Scholar
Bauchop, T. & Elsden, S. R. (1960). J. gen. Microbiol. 23, 457.Google Scholar
Bender, A. E. & Miller, D. S. (1953). Biochem. J. 53, vii.Google Scholar
Black, J. L. (1970 a). Aust. J. Sci. 32, 332.Google Scholar
Black, J. L. (1970 b). Utilization of protein and energy in growing lambs. PhD Thesis, University of Melbourne.Google Scholar
Blair, H. A., Dern, R. J. & Bates, P. L. (1947). Am. J. Physiol. 149, 688.Google Scholar
Blaxter, K. L. (1961). Fedn Proc. Fedn Am. Socs exp. Biol. 20, Suppl. 7, p. 268.Google Scholar
Blaxter, K. L. (1962). The Energy Metabolism of Ruminants. London: Hutchinson.Google Scholar
Blaxter, K. L. & Clapperton, J. L. (1965). Br. J. Nutr. 19, 511.CrossRefGoogle Scholar
Blaxter, K. L., Clapperton, J. L. & Wainman, F. W. (1966). J. agric. Sci., Camb. 67, 67.Google Scholar
Blaxter, K. L. & Martin, A. K. (1962). Br. J. Nutr. 16, 397.Google Scholar
Blaxter, K. L., Wainman, F. W. & Wilson, R. S. (1961). Anim. Prod. 3, 51.Google Scholar
Boling, J. A., Faltin, E. C., Hoekstra, W. G. & Hauser, E. R. (1967). J. Anim. Sci. 26, 1385.CrossRefGoogle Scholar
Bradley, N. W., Jones, B. M. Jr, Mitchell, G. E. Jr & Little, C. O. (1966). J. Anim. Sci. 25, 480.Google Scholar
Brooks, C. C., Garner, G. B., Gehrke, C. W., Muhrer, M. E. & Pfander, W. H. (1954). J. Anim. Sci. 13, 758.Google Scholar
Bruce, J., Goodall, E. D., Kay, R. N. B., Phillipson, A. T. & Vowles, L. E. (1966). Proc. R. Soc. B166, 46.Google Scholar
Cameron, C. D. T. (1960). Can. J. Anim. Sci. 40, 126.Google Scholar
Chalmers, M. I., Cuthbertson, D. P. & Synge, R. L. M. (1954). J. agric. Sci., Camb. 44, 254.Google Scholar
Clary, J. J., Mitchell, G. E. Jr & Little, C. O. (1967). J. Anim. Sci. 26, 917.Google Scholar
Cole, D. J. A., Duckworth, J. E. & Holmes, W. (1967). Anim. Prod. 9, 149.Google Scholar
Conrad, H. R., Miles, R. C. & Butdorf, J. (1967). J. Nutr. 91, 337.Google Scholar
De Groot, A. P. & Hoogendoorn, P. (1956). Neth. Milk Dairy J. 11, 290.Google Scholar
Elliott, J. M. & Loosli, J. K. (1959). J. Dairy Sci. 42, 843.CrossRefGoogle Scholar
Ellis, N. C., Garner, G. B., Muhrer, M. E. & Pfander, W. H. (1956). J. Nutr. 60, 413.Google Scholar
el-Shazly, K. (1952). Biochem. J. 51, 647.Google Scholar
Ely, D. G., Little, C. O., Woolfolk, P. G., & Mitchell, G. E. Jr (1967). J. Nutr. 91, 314.CrossRefGoogle Scholar
Eriksson, S. (1952). K. LantbrHögsk. Annlr 19, 7.Google Scholar
Esplin, G., Hale, W. H., Hubbert, F. Jr. & Taylor, B. (1963). J. Anim. Sci. 22, 695.Google Scholar
Ferguson, K. A., Hemsley, J. A. & Reis, P. J. (1967). Aust. J. Sci. 30, 215.Google Scholar
Fonnesbeck, P. V. (1969). J. Anim. Sci. 28, 624.Google Scholar
Freer, M. & Campling, R. C. (1963). Br. J. Nutr. 17, 79.CrossRefGoogle Scholar
Graham, N. McC. (1967). Aust. J. agric. Res. 18, 127.Google Scholar
Grainger, R. B., Bell, M. C., Stroud, J. W. & Baker, F. H. (1961). J. Anim. Sci. 20, 319.Google Scholar
Heath, T. J. & Morris, B. (1962). Q. Jl exp. Physiol. 47, 157.Google Scholar
Hedin, P. A. (1962). J. Nutr. 77, 471.Google Scholar
Hedin, P. A. & Adachi, R. A. (1962). J. Nutr. 77, 229.Google Scholar
Hemsley, J. A. (1967). Aust. J. exp. Biol. med. Sci. 45, P39.Google Scholar
Hobson, P. N. & Howard, B. H. (1969). In Handbuch Der Tiernernährung Vol. 1. Allgemeine Grundlagen p. 207 [Lenkeit, W., Breirem, K. and Crasemann, E., editors]. Hamburg and Berlin: Verlag P. Parey.Google Scholar
Hogan, J. P. & Weston, R. H. (1967 a). Aust. J. agric. Res. 18, 803.Google Scholar
Hogan, J. P. & Weston, R. H. (1967 b). Aust. J. agric. Res. 18, 973.Google Scholar
Hogan, J. P. & Weston, R. H. (1968). Proc. Aust. Soc. Anim. Prod. 7, 364.Google Scholar
Hogan, J. P. & Weston, R. H. (1969). Aust. J. agric. Res. 20, 347.Google Scholar
Hoogenraad, N. J., Hird, F. J. R., White, R. G. & Leng, R. A. (1970). Br. J. Nutr. 24, 129.Google Scholar
Huber, J. T. (1969). J. Dairy Sci. 52, 1303.Google Scholar
Huber, J. T., Jacobson, N. L., Allen, R. S. & Hartman, P. A. (1961). J. Dairy Sci. 44, 1494.Google Scholar
Huber, J. T., Natrajan, S. & Polan, C. E. (1967). J. Dairy Sci. 50, 1161.CrossRefGoogle Scholar
Huber, J. T., Rifkin, R. J. & Keith, J. M. (1964). J. Dairy Sci. 47, 789.CrossRefGoogle Scholar
Hungate, R. E. (1965). In Physiology of Digestion in the Ruminant, p. 311 [Dougherty, R. W., editor]. Washington: Buttenvorths.Google Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. London and New York: Academic Press.Google Scholar
Hutchinson, K. J. (1958). Aust. J. agic. Res. 9, 508.Google Scholar
Jagusch, K. T. (1968). Utilization of energy by the milk-fed lamb, with special reference to the composition of the gain in weight. PhD Thesis, University of Syndey.Google Scholar
Johnson, B. C., Hamilton, T. S., Robinson, W. B. & Garey, J. C. (1944). J. Anim. Sci. 3, 287.Google Scholar
Johnson, D. Jr, Dolge, K. L., Rousseau, J. E. Jr, Teichman, R., Eaton, H. D., Beall, G. & Moore, L. A. (1956). J. Dairy Sci. 39, 1268.Google Scholar
Keys, J. E., Van Soest, P. J. & Young, E. P. (1969). J. Anim. Sci. 29, 11.Google Scholar
Kirk, E. (1949). Gastroenterology 12, 782.Google Scholar
Krebs, H. A. (1964). In Mammalian Protein Metabolism Vol. 1, p. 125 [Munro, H. N. and Allison, J. B., editors]. London and New York: Academic Press.Google Scholar
Leathem, J. H. (1964). In Mammalian Protein Metabolism Vol. 1, p. 343 [Munro, H. N. and Allison, J. B., editors]. London and New York: Academic Press.Google Scholar
Loesche, W. J. (1968). Proc. Soc. exp. Biol. Med. 129, 380.CrossRefGoogle Scholar
Lough, A. K. & Garton, G. A. (1968). In Comparative Nutrition of Wild Animals p. 163 [Craw-ford, M. A., editor]. London and New York: Academic Press.Google Scholar
McDonald, I. W. (1968). Aust. vet. J. 44, 145.Google Scholar
McDonald, I. W. & Hall, R. J. (1957). Biochem. J. 67, 400.Google Scholar
McNaught, M. L., Owen, E. C., Henry, K. M. & Kon, S. K. (1954). Biochem. J. 56, 151.Google Scholar
Marshall, R. A. (1949). Br. J. Nutr. 3, 1.Google Scholar
Marston, H. R. (1948). Biochem. J. 42, 564.Google Scholar
Martin, A. K. (1969). Br. J. Nutr. 23, 389.Google Scholar
Martin, A. K. & Blaxter, K. L. (1965). In Energy Metabolism p. 83 [Blaxter, K. L., editor]. London and New York: Academic Press.Google Scholar
Meyer, J. H., Kromann, R. & Garrett, W. N. (1965). In Physiology of Digestion in the Ruminant p. 262. [Dougherty, R. W., editor]. Washington: Buttenworths.Google Scholar
Mönnig, N. O. & Quin, J. I. (1935). Onderstepoort J. vet. Sci. Anim. Ind. 5, 485.Google Scholar
Munro, H. N. (1951). Physiol. Rev. 31, 449.Google Scholar
Nehring, K., Hoffmann, L., Schiemann, R. & Jentsch, W. (1963). Arch. Tierernähr. 13, 193.CrossRefGoogle Scholar
Norton, B. W. (1968). The nutrition of the milk-fed lamb: nitrogen retention during growth. PhD Thesis, University of Sydney.Google Scholar
Ørskov, E. R. & Benzie, D. (1969). Br. J. Nutr. 23, 415.Google Scholar
Ørskov, E. R. & Fraser, C. (1968). Proc. Nutr. Soc. 27, 37A.Google Scholar
Ørskov, E. R. & Fraser, C. (1969). Anim. Prod. 11, 281.Google Scholar
Ørskov, E. R., Fraser, C. & Kay, R. N. B. (1969). Br. J. Nutr. 23, 217.Google Scholar
Owen, J. B. & Ridgman, W. J. (1968). Anim. Prod. 10, 85.Google Scholar
Paladines, O. L., Reid, J. T., Van Niekerk, B. D. H. & Bensadoun, A. (1964). J. Anim. Sci. 23, 528.Google Scholar
Peterson, D. W., Grau, C. R. & Peek, N. F. (1954). J. Nutr. 52, 241.Google Scholar
Platt, B. S. & Miller, D. S. (1959). Proc. Nutr. Soc. 18, vii.Google Scholar
Preston, R. L. & Hembry, F. G. (1969). Pfizer Ann. Res. Conf. 17, 74.Google Scholar
Putnam, P. A. & Davis, R. E. (1965). J. Anim. Sci. 24, 826.Google Scholar
Raven, A. M. & Robinson, K. L. (1961). Nature, Lond. 192, 1256.Google Scholar
Reed, I. M., Moir, R. J. & Underwood, E. J. (1949). Aust. J. scient. Res. B 2, 304.Google Scholar
Reid, R. L. (1968). In A Practical Guide to the Study of the Productivity of Large Herbivores p. 190 [Golley, F. B., and Buechner, H. K., editors]. Oxford: Blackwell.Google Scholar
Reid, R. L., Hogan, J. P. & Briggs, P. K. (1957). Aust. J. agric. Res. 8, 691.Google Scholar
Reis, P. J. (1969). Aust. J. biol. Sci. 22, 745.Google Scholar
Reis, P. J. & Schinckel, P. G. (1961). Aust. J. agric. Res. 12, 335.CrossRefGoogle Scholar
Reis, P. J. & Schinckel, P. G. (1963). Aust. J. biol. Sci. 16, 218.CrossRefGoogle Scholar
Reis, P. J. & Schinckel, P. G. (1964). Aust. J. biol. Sci. 17, 532.CrossRefGoogle Scholar
Riek, R. F. (1954). Aust. vet. J. 30, 29.Google Scholar
Schalk, A. F. & Amadon, R. S. (1928). Bull. N. Dak. agric. Exp. Stn no. 216.Google Scholar
Scott, T. W., Cook, L. J., Ferguson, K. A. & McDonald, I. W. (1970). Aust. J. Sci. 32, 291.Google Scholar
Sibbald, I. R., Berg, R. T. & Bowland, J. P. (1956). J. Nutr. 59, 385.Google Scholar
Smith, R. H. (1969). J. Dairy Res. 36, 313.Google Scholar
Snyderman, S. E. (1967). In Urea as a Protein Supplement p. 441 [Briggs, M. H., editor]. London: Pergamon Press.Google Scholar
Stokes, G. B. (1968). The nutritive value of fat in the diet of the milk-fed lamb. MSc Thesis, University of Sydney.Google Scholar
Swanson, E. W., Thigpen, J. E., Huskey, J. & Hazlewood, B. P. (1969). J. Dairy Sci. 52, 228.CrossRefGoogle Scholar
Swift, R. W., Bratzler, J. W., James, W. H., Tillman, A. D. & Meek, D. C. (1948). J. Anim. Sci. 7, 475.Google Scholar
Topps, J. H., Kay, R. N. B. & Goodall, E. D. (1968). Br. J. Nutr. 22, 261.Google Scholar
Tucker, R. E., Mitchell, G. E. Jr & Little, C. O. (1968). J. Anim. Sci. 27, 824.Google Scholar
Ulyatt, M. J., Blaxter, K. L. & McDonald, I. (1967). Anim. Prod. 9, 463.Google Scholar
Van De Kamer, J. H. & Weijers, H. A. (1961). Fedn Proc. Fedn Am. Socs exp. Biol. 20, Suppl. 7, P. 335.Google Scholar
Vidal, H. M., Hogue, D. E., Elliott, J. M. & Walker, E. F. Jr. (1969). J. Anim. Sci. 29, 62.Google Scholar
Walker, D. J. (1965). In Physiology of Digestion in the Ruminant p. 296 [Dougherty, R. W., editor]. Washington: Butterworths.Google Scholar
Walker, D. M. (1959). J. agric. Sci., Camb. 53, 374.Google Scholar
Walker, D. M. & Cook, L. J. (1967). Br. J. Nutr. 21, 237.Google Scholar
Walker, D. M. & Faichney, G. J. (1964 a). Br. J. Nutr. 18, 187.Google Scholar
Walker, D. M. & Faichney, G. J. (1964 b). Br. J. Nutr. 18, 209.Google Scholar
Warner, R. L., Mitchell, G. E. Jr & Little, C. O. (1968). J. Anim. Sci. 27, 1773.Google Scholar
Watson, R. H. (1944). Bull. Coun. scient. ind. Res., Melb. 180, 1.Google Scholar
Watson, R. H. & Jarrett, I. G. (1941). Aust. vet. J. 17, 137.Google Scholar
Welch, J. G. (1967). J. Anim. Sci. 26, 849.Google Scholar
Wright, P. L., Grainger, R. B. & Marco, G. J. (1966). J. Nutr. 89, 241.Google Scholar