Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T06:14:47.176Z Has data issue: false hasContentIssue false

Time-course effects of protein malnutrition on hepatic fatty acids Δ6 and Δ5 desaturation in the growing rat

Published online by Cambridge University Press:  09 March 2007

Michel Narce
Affiliation:
Laboratoire de Physiologie Animale et de la Nutrition, UA CNRS 273, Faculté des Sciences Mirande, BP 138, 21004 Dijon Cedex, France
Jean-Pierre Poisson
Affiliation:
Laboratoire de Physiologie Animale et de la Nutrition, UA CNRS 273, Faculté des Sciences Mirande, BP 138, 21004 Dijon Cedex, France
Jacques Belleville
Affiliation:
Laboratoire de Physiologie Animale et de la Nutrition, UA CNRS 273, Faculté des Sciences Mirande, BP 138, 21004 Dijon Cedex, France
Bernard Chanussot
Affiliation:
Laboratoire de Physiologie Animale et de la Nutrition, UA CNRS 273, Faculté des Sciences Mirande, BP 138, 21004 Dijon Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In growing rats, the time-course effects of giving a normal-protein diet (200 g casein/kg; NP) for 52 d, a low-protein diet (20 g casein/kg; LP) for 52 d and a LP diet for 26 d followed by balanced refeeding (200 g casein/kg; BR) for 26 d, on the fatty acid composition of liver total lipids and microsomal phospholipids were investigated together with Δ6- and Δ5-microsomal desaturase activities.

2. The oleic acid content (mg/g tissue) of liver total lipids increased progressively with the LP diet, while linoleic acid was increased only at days 7 and 52. 20:3ω6, 20:4ω6, 22:5ω6 and 22:6ω3 fatty acids decreased during the period on the LP diet. BR for 7 d was sufficient to restore the fatty acid composition of total lipids to control values. Changes in the fatty acid composition of liver microsomal L-α-phosphatidylcholines were observed only after 52 d on the LP diet; the proportions (% w/w total fatty acids) of 18:0, 20:3ω6 and 20:4ω6 fatty acids decreased while oleic acid increased. The fatty acid composition of L-α-phosphatidylethanolamines was less affected.

3. Δ6- and Δ5-desaturase activities decreased to 20–30% of their original values after 2 d on the LP diet; a smaller deficit prevailed after 14 d but disappeared after 25 d, to appear again after 52 d. As early as day 2 of BR, desaturase activities were greatly recovered and returned to control values at day 13.

4. The present work shows that modifications in microsomal Δ6- and Δ5-desaturase activities are not strictly paralleled by the changes in the composition of fatty acids of liver total lipids and microsomal phospholipids.

Type
General Nutrition papers
Copyright
Copyright © The Nutrition Society 1988

References

Anthony, L. E. & Edozien, J. C. (1975). Journal of Nutrition 105, 631648.CrossRefGoogle Scholar
Bartlett, G. R. (1959). Journal of Biological Chemistry 234, 466468.CrossRefGoogle Scholar
Bezard, J., Boucrot, P. & Clement, G. (1964). Journal of Chromatography 14, 368377.CrossRefGoogle Scholar
Brenner, R. R. (1981). Progress in Lipids Research 20, 4147.CrossRefGoogle Scholar
De Gomez Dumm, I. N. T., De Alaniz, M. J. T. & Brenner, R. R. (1970). Journal of Lipid Research 11, 96101.CrossRefGoogle Scholar
Delsal, J. L. (1944). Bulletin de la Société de Chimie Biologic 29, 99105.Google Scholar
De Tomas, M. E., Mercuri, O. & Rodrigo, A. (1980). Journal of Nutrition 110, 595599.CrossRefGoogle Scholar
Faas, F. H., Carter, W. J. & Wynn, J. O. (1977). Archives of Biochemistry and Biophysics 182, 7181.CrossRefGoogle Scholar
Flores, H., Sierralta, W. & Monckeberg, F. (1970). Journal of Nutrition 100, 375379.CrossRefGoogle Scholar
Gerson, T. (1974). Journal of Nutrition 104, 701709.CrossRefGoogle Scholar
Gerson, T. & Wong, H. N. (1978). Lipids 13, 446450.CrossRefGoogle Scholar
Graham, G. G., Baertl, J. M., Claeyssen, G., Soskind, R., Greenberg, A. H., Thompson, R. G. & Blizzard, R. M. (1973). Journal of Pediatrics 83, 321331.CrossRefGoogle Scholar
Harada, N., Kurahashi, M. & Haga, M. (1969). Agricultural and Biological Chemistry 33, 168175.CrossRefGoogle Scholar
Holman, R. T., Johnson, S. B., Mercuri, O., Itarte, H. J., Rodrigo, M. A. & De Tomas, M. E. (1981) American Journal of Clinical Nutrition 34, 15341539.CrossRefGoogle Scholar
Inkpen, C. A., Harris, R. A. & Quackenbush, W. F. (1969). Journal of Lipid Research 10, 277282.CrossRefGoogle Scholar
Layne, E. (1957). Spectrophotometric and Turbidimetric Methods for Measuring Proteins. New York: Academic Press.CrossRefGoogle Scholar
Leat, W. M. F. (1983). Proceedings of the Nutrition Society 42, 333343.CrossRefGoogle Scholar
Lowry, O. H., Rosenbrough, W. J., Farr, A. L. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265275.CrossRefGoogle Scholar
Meghelli-Bouchenak, M., Boquillon, M. & Belleville, J. (1987). Journal of Nutrition 117, 641649.CrossRefGoogle Scholar
Mercuri, O., De TomasM. E., M. E., & Itarte, H. (1979). Lipids 14, 822825.CrossRefGoogle Scholar
Naismith, D. L. (1973). British Journal of Nutrition 30, 567576.CrossRefGoogle Scholar
Ninno, R. E., De Torrengo, M. A. P., Castuma, J. C. & Brenner, R. R. (1974). Biochimica et Biophysica Acta 360, 124133.CrossRefGoogle Scholar
Oshino, N. & Sato, R. (1972). Archives of Biochemistry and Biophysics 149, 369377.CrossRefGoogle Scholar
Peluffo, R. O., Nervi, A. M. & Brenner, R. R. (1976). Biochimica et Biophysica Acta 441, 2531.CrossRefGoogle Scholar
Poisson, J.-P. (1985). Enzyme 34, 114.CrossRefGoogle Scholar
Rastogi, G. K., Sawhney, R. C., Panda, N. C. & Tripathy, B. B. (1974). Hormone and Metabolic Research 6, 528529.CrossRefGoogle Scholar
Ratieuville, P. (1985). Contribution à l'étude de la Δ5 désaturation in vitro de I'acide dihomo-γ-linolénique (C20:3n-6) par les microsomes hépatiques de rats. Effets des acides gras alimentaires. Troisième Cycle Thesis, University of Dijon, France.Google Scholar
Rogers, C. G. (1971). Journal of Nutrition 101, 15471554.CrossRefGoogle Scholar
Rogers, C. G. (1972). Nutrition Reports International 5, 381390.Google Scholar
Seakins, A. & Waterlow, J. C. (1972). Biochemical Journal 129, 793795.CrossRefGoogle Scholar
Slover, H. T. & Lanza, E. (1979). Journal of the American Oil Chemists Society 56, 933943.CrossRefGoogle Scholar
Truswell, A. S., Hansen, J D., Watson, C. E. & Wannenburg, P. (1969). American Journal of Clinical Nutrition 22, 568576.CrossRefGoogle Scholar
Tulpo, L., Krupp, P. P., Danforthe, E. Jr & Horton, E. S. (1979). Journal of Nutrition 109, 13211332.CrossRefGoogle Scholar
Wagner, H., Hörhammer, L. & Wolff, P. (1961). Biochemische Zeitschrift 334, 175184.Google Scholar
Waterlow, J. C., Cravioto, J. & Stephen, J. M. L. (1960). Advances in Protein Chemistry, Vol. 15, pp. 131227. New York: Academic Press.Google Scholar
Williams, J. N. & Hurlebaus, A. J. (1965 a). Journal of Nutrition 85, 7381.CrossRefGoogle Scholar
Williams, J. N. & Hurlebaus, A. J. (1965 b). Journal of Nutrition 85, 8288.CrossRefGoogle Scholar
Williams, J. N. & Hurlebaus, A. J. (1966). Journal of Nutrition 89, 477486.CrossRefGoogle Scholar
Yagasaki, K. & Kametaka, M. (1978). Journal of Nutritional Science and Vitaminology 24, 149156.CrossRefGoogle Scholar