Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T06:46:27.082Z Has data issue: false hasContentIssue false

T-lymphocyte subsets and interleukin-2 production in zinc-deficient rats

Published online by Cambridge University Press:  09 March 2007

Pauline S. Dowd
Affiliation:
University Department of Surgery, St James's University Hospital, Leeds LS9 7TF
J. Kelleher.
Affiliation:
University Department of Surgery, St James's University Hospital, Leeds LS9 7TF
P. J. Guillou
Affiliation:
University Department of Surgery, St James's University Hospital, Leeds LS9 7TF
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. It has been suggested that zinc-deficiency impairs cellular (T-lymphocyte-mediated) immune responses via a selective effect on helper T-lymphocytes. We have addressed this question in the rat by employing recently developed reagents in the form of monoclonal antibodies which specifically identify rat T-lymphocyte subsets (identifying total T-cells, helper T-cells and suppressor T-cells) and also by quantifying helper T-cell function by measurement of the helper T-cell-derived molecule interleukin-2 (IL-2).

2. Zn-deficiency induced T-cell atrophy (assessed morphologically and phenotypically with anti-rat T-cell monoclonal antibodies) in both peripheral blood and spleen. The use of these specific monoclonal antibodies failed to demonstrate a selective effect of Zn deficiency on the helper T-cell fraction of the total T-lymphocyte population.

3. In contrast, the results of functional assays of the T-lymphocyte response were dependent on the conditions of culture but suggested that the generation of IL-2 and its corresponding receptor were determined by the intracellular Zn status. Thus, in vivo, helper T-lymphocyte numbers are non-specifically reduced since other T-cell subsets are also reduced in response to appropriate stimulation. The functional consequences of this are dependent on the intracellular concentration of Zn but appear to influence both IL-2 production and its receptors on activated T-cells.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Allen, J. I., Kay, N. E. & McClain, C. J. (1981). Annals of Internal Medicine 40, 154157.CrossRefGoogle Scholar
Bach, J. F. (1981). Immunology Today 2, 225227.CrossRefGoogle Scholar
Bach, J. F., Bach, M. A., Blanot, D., Bricas, E., Charreire, J., Dardenne, M., Fournier, C. & Pleau, J. M. (1978). Bulletin of the Pasteur Institute 76, 325335.Google Scholar
Baird, L. G. & Kaplan, A. M. (1977). Cellular Immunology 28, 2229.CrossRefGoogle Scholar
Bendtzen, K. (1980). Scandinavian Journal of Immunology 12, 203209.CrossRefGoogle Scholar
Cantrell, D. A., Robins, R. A., Brooks, C. G. & Baldwin, R. W. (1982). Immunology 45, 97103.Google Scholar
Chandra, R. K. (1984). Journal of the American Medical Association 252, 14431446.CrossRefGoogle Scholar
Chandra, R. K., Heresi, G. & Au, B. (1980). Clinical and Experimental Immunology 42, 332335.Google Scholar
Dardenne, M., Savino, W., Wade, S., Kaiserlian, D., Lemonnier, D. & Bach, J. F. (1984). European Journal of Immunology 14, 454458.CrossRefGoogle Scholar
Fernandes, G., Nair, M., Onoe, K., Tanaka, T., Floyd, R. & Good, R. A. (1979). Proceedings of the National Academy of Sciences of the USA 76, 457461.CrossRefGoogle Scholar
Folch, H., Yoshinaga, M. & Wakeman, B. H. (1973). Journal of Immunology 110, 835838.CrossRefGoogle Scholar
Fraker, P. T., Deposquale-Jardieu, P., Zwickle, L. M. & Leucke, R. W. (1978). Proceedings of the National Academy of Sciences of the USA 75, 56605664.CrossRefGoogle Scholar
Fraker, P. T. & Leucke, R. W. (1981). Advances in Experimenial Medicine and Biology 135, 107119.Google Scholar
Frost, P., Rabberi, P., Smith, T. & Prasad, A. (1981). Proceedings of the Society for Experimental Biology and medicine 167, 333337.CrossRefGoogle Scholar
Gillis, S. (1983). Journal of Clinical Immunology 3, 113.CrossRefGoogle Scholar
Gillis, S., Ferm, M. M., Ou, W., & Smith, K. A. (1978). Journal of Immunology 120, 20272032.CrossRefGoogle Scholar
Gross, R. L., Osdin, N., Fong, L. & Newberne, P. M. (1979 a). American Journal of Clinical Nutrition 32, 12601265.CrossRefGoogle Scholar
Gross, R.L., Osdin, N., Fong, L. & Newberne, P. M. (1979 b). American Journal of Clinical Nutrition 32, 12671271.CrossRefGoogle Scholar
Guillou, P. J., Kerr, M. B., Ramsden, C. & Giles, G. R. (1984). In New Perspectives in Theophylline Therapy (International Symposium series no. 78), pp. 157164 [Turner-Warwick, M. and Levy, J., editors]. London: Royal Society of Medicine.Google Scholar
Iwata, T., Incefy, G. S. & Tanaka, T. (1979). Cellular Immunology 47, 100109.CrossRefGoogle Scholar
Kohler, G. & Milstein, C. (1975). Nature 256. 495497.CrossRefGoogle Scholar
Malave, I. & Benaim, I. R. (1984). Cellular Immunology 89, 322330.CrossRefGoogle Scholar
Messer, H. H., Murray, E. T. & Goebel, N. K. (1982). Journal of Nutrition 112, 652657.CrossRefGoogle Scholar
National Academy of Sciences (1972). Nutrient Requirements of Laboratory Animals, publication no. 10. Washington DC: National Academy of Sciences.Google Scholar
Osawa, H. & Diamantstein, T. (1984). European Journal of Immunology 14, 374377.CrossRefGoogle Scholar
Robb, R. J. (1984). Immunology Today 5, 203209.CrossRefGoogle Scholar
Salvin, S. B. & Rabin, B. S. (1984). Cellular Immunology 87, 546552.CrossRefGoogle Scholar
Williams, A. F., Galfre, G. & Milstein, C. (1977). Cell 12, 633673.CrossRefGoogle ScholarPubMed