Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T20:53:03.321Z Has data issue: false hasContentIssue false

Trace-nutrient-binding proteins in milk and the growth of bacteria in the gut of infant rabbits

Published online by Cambridge University Press:  09 March 2007

C. B. Cole
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
K. J. Scott
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
M. J. Henschel
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
M. E. Coates
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
J. E. Ford
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
R. Fuller
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The influence of trace-nutrient-binding proteins on the growth of coliforms, streptococci and lactobacilli in the gastrointestinal tract was examined in neonatal rabbits delivered germ-free and dosed with an artificial flora (ESL), or born conventionally and dosed with ESL or rabbit faeces.

2. In the stomach and small intestine of both gnotobiotic and conventional animals the counts of coliforms were usually atypically high and those of streptococci were always low. In the colon the counts of coliforms and streptococci were high. Lactobacilli usually became established in the gut of the gnotobiotic animals but were not found in the conventional rabbits.

3. Sterilization (freeze-drying followed by γ-irradiation) of the milk decreased its capacity to bind added iron by 45% and vitamin B12 by 30%. When compared with raw milk, feeding of radiation-sterilized milk did not affect the viable count of coliforms and streptococci in the gut of gnotobiotic animals.

4. Saturating the nutrient-binding proteins in milk with Fe, folic acid and vitamin B12 had no effect on the numbers of coliforms, streptococci and lactobacilli recovered from the intestine.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

REFERENCES

Barnes, E. M. (1956). J. appl. Bact. 19, 193.CrossRefGoogle Scholar
Bate, G. W., Billups, C. & Saltman, P. (1967). J. biol. Chem. 242, 2810.CrossRefGoogle Scholar
Beerens, E. M., Romond, C. & Neut, C. (1980). Am. J. clin. Nutr. 33, 2434.CrossRefGoogle Scholar
Blanc, B. (1964). Les protéins du lactosérum. Leurs relations avec l'immunité et le métabolism due fer. Thèse, Medecine et Hygiène, Université de Genève.Google Scholar
Brock, J. H. (1980). Archs Dis. Childh. 55, 417.CrossRefGoogle Scholar
Bullen, J. J., Rodgers, H. J. & Leigh, L. (1972). Br. med. J. i, 69.CrossRefGoogle Scholar
Cañas-Rodriguez, A. & Smith, H. W. (1966). Biochem. J. 100, 79.CrossRefGoogle Scholar
de Man, J. C., Rogosa, M. & Sharpe, M. E. (1960). J. appl. Bact. 23, 130.CrossRefGoogle Scholar
Fesce, A., Ceccarelli, A., Fesce, E. & Balsari, A. (1977). Folia. Vet. Lat. 7, 225.Google Scholar
Fonty, G., Gouet, Ph. & Riou, Y. (1979). Annls Biol. anim. Bioch. Biophys. 19, 567.CrossRefGoogle Scholar
Ford, J. E. (1974). Br. J. Nutr. 31, 243.CrossRefGoogle Scholar
Ford, J. E., Gregory, M. E. & Thompson, S. Y. (1962). Int. Dairy Congr. XVI, Copenhagen, A, 917.Google Scholar
Ford, J. E., Knaggs, G. S., Salter, D. N. & Scott, K. J. (1972). Br. J. Nutr. 27, 571.CrossRefGoogle Scholar
Ford, J. E., Law, B. A., Marshall, V. M. E. & Reiter, B. (1977). J. Pediat. 90, 29.CrossRefGoogle Scholar
Ford, J. E., Scott, K. J., Sansom, B. F. & Taylor, P. T. (1975). Br. J. Nutr. 34, 469.CrossRefGoogle Scholar
Fuller, R. & Moore, J. H. (1971). Lab. Anim. 5, 25.CrossRefGoogle Scholar
Gouet, Ph. & Fonty, G. (1973). Annls Biol. anim. Bioch. Biophys. 13, 733.CrossRefGoogle Scholar
Gouet, Ph. & Fonty, G. (1979). Annls Biol. anim. Bioch. Biophys. 19, 553.CrossRefGoogle Scholar
Gregory, M. E. (1954). Br. J. Nutr. 8, 340.CrossRefGoogle Scholar
Gregory, M. E. & Holdsworth, E. S. (1955). Biochem. J. 59, 329.CrossRefGoogle Scholar
Gullberg, R. (1973). Scand. J. Gastroent. 8, 497.CrossRefGoogle Scholar
Gustafsson, B. E. (1959). Ann. N.Y. Acad. Sci. 78, 17.CrossRefGoogle Scholar
Jordan, S. M., Kaldor, I. & Morgan, E. H. (1967). Nature, Lond. 215, 76.CrossRefGoogle Scholar
Reiter, B., Brock, J. H. & Steel, E. D. (1975). Immunology 28, 83.Google Scholar
Rogosa, M., Mitchell, J. A. & Wiseman, R. F. (1951). J. Bact. 62, 132.CrossRefGoogle Scholar
Samson, R. R., Mirtle, C. & McCelland, D. B. L. (1980). Acta. Paed. scand. 59, 517.CrossRefGoogle Scholar
Smith, H. W. (1965). J. Path. Bact. 90, 495.CrossRefGoogle Scholar
Smith, H. W. (1966). J. Path. Bact. 91, 1.CrossRefGoogle Scholar
von Malthes, S. (1981). Kleintier. Prax. 26, 383.Google Scholar