Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T07:02:10.308Z Has data issue: false hasContentIssue false

The urinary excretion of metabolites of riboflavine by man

Published online by Cambridge University Press:  09 March 2007

D. W. West
Affiliation:
Biochemistry Department, Hannah Dairy Research Institute, Ayr
E. C. Owen
Affiliation:
Biochemistry Department, Hannah Dairy Research Institute, Ayr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A dose of 1 g of riboflavine caused a large excretion of the vitamin in human urine and the rate of excretion showed more than one maximum.

2. Various degradation products of riboflavine appeared in the urine approximately 24 h after the dose was administered and two of these were identified as 7,8-dimethyl-10-(2-hydroxy-ethyl)isoalloxazine, and 7,8-dimethyl-10-formyl-methylisoalloxazine. Reasons are given for believing that the degradation of riboflavine was due to bacterial action in the colon.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1969

References

Bessey, O. A., Lowry, O. H., Davis, E. B. & Dorn, J. L. (1958). J. Nutr. 64, 185.CrossRefGoogle Scholar
Bro-Rasmussen, F. (1958 a). Nutr. Abstr. Rev. 28, 1.Google Scholar
Bro-Rasmussen, F. (1958 b). Nutr. Abstr. Rev. 28, 369.Google Scholar
Campbell, J. A. & Morrison, A. B. (1963). Am. J. clin. Nutr. 12, 162.CrossRefGoogle Scholar
Everson, G., Wheeler, E., Walker, H. & Caulfield, W. J. (1948). J. Nutr. 35, 209.Google Scholar
Fall, H. H. & Petering, H. G. (1956). J. Am. chem. Soc. 78, 377.Google Scholar
Harkness, D. R., Tsai, L. & Stadtman, E. R. (1964). Archs Biochem. Biophys. 108, 323.CrossRefGoogle Scholar
Innami, S., Kawachi, T. & Oizumi, H. (1965). Jap. J. Nutr. 23, 1.Google Scholar
Jusko, W. J. & Levy, G. (1966). J. pharm. Sci. 55, 285.Google Scholar
Jusko, W. J. & Levy, G. (1967 a). J. pharm. Sci. 56, 58.Google Scholar
Jusko, W. J. & Levy, G. (1967 b). J. pharm. Sci. 56, 1145.Google Scholar
Kuvaeva, I. B. (1967). Fiziol. Zh. SSSR 53, 835.Google Scholar
Miles, H. T. & Stadtman, E. R. (1955). J. Am. chem. Soc. 77, 5746.Google Scholar
Najjar, V. A., Johns, G. A., Medairy, G. C., Fleischmann, G. & Holt, L. E. (1944) J. Am. med. Ass. 126, 357.Google Scholar
Owen, E. C. (1968). Lab. Pract. 17, 1137.Google Scholar
Owen, E. C. & Dzialoszynski, L. (1965). Proc. Nutr. Soc. 24.Google Scholar
Owen, E. C. & West, D. W. (1968). J. chem. Soc. (C) p. 34.Google Scholar
Owen, E. C. & West, D. W. (1970). Br. J. Nutr. 24. (In the Press.)Google Scholar
Smith, E. C. & Metzler, D. E. (1963). J. Am. chem. Soc. 85, 3285.Google Scholar
Spencer, R. P. & Zamcheck, N. (1961). Gastroenterology 40, 794.Google Scholar
Stripp, B. (1965). Acta pharmac. tax. 22, 353.CrossRefGoogle Scholar
Teshima, S. & Kashiwada, K. (1966). Kagoshima Daigaku Suisan Gakabu Kiyo 15, 1.Google Scholar
US Pharmacopoeia, XVI (1960). 16th Revise, p. 907.Google Scholar
West, D. W., Owen, E. C. & Taylor, M. M. (1967). Proc. Nutr. Soc. 26, 17.Google Scholar
Yagi, K., Nagatsu, T., Nagatsu-Ishibashi, I. & Ohashi, A. (1966). J. Biochem., Tokyo 59, 313.Google Scholar
Yanagita, T. & Foster, J. W. (1956). J. biol. Chem. 221, 593.CrossRefGoogle Scholar
Yang, C. S. & McCormick, D. B. (1967). J. Nutr. 93, 445.Google Scholar