Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T01:48:56.703Z Has data issue: false hasContentIssue false

The use of three dye-binding procedures for the assessment of heat damage to food proteins*

Published online by Cambridge University Press:  25 March 2008

R. F. Hurrell
Affiliation:
Department of Applied Biology, University of Cambridge, Cambridge CB2 3DX
K. J. Carpenter
Affiliation:
Department of Applied Biology, University of Cambridge, Cambridge CB2 3DX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A study has been made of pure proteins heated either alone or in contact with sugars, so as to cause a severe fall in their reactive lysine contents, and also of commercial protein concentrates.

2. For unheated materials, and for bovine plasma albumin and fat-extracted, dried chicken muscle severely heated in the absence of sugar, Acid Orange 12 binding values (mmol bound dye/kg crude protein (nitrogen × 6·25)) were close to the sum of total histidine, total arginine and reactive lysine contents (mmol/kg crude protein (N × 6·25)), which we have termed HARL values. The dye-binding values and the HARL values were reduced similarly by heat treatment.

3. For materials in which protein and glucose had reacted under mild conditions (37°), the dye-binding capacity with Acid Orange 12 was unchanged even though the HARL value of these materials was considerably reduced. When protein and glucose or sucrose were heated more severely, the dye-binding capacity was slightly lowered but not to the same extent as the reduction in the basic amino acids.

4. Animal feeding-stuffs, whether unheated, industrially processed or deliberately heated, appeared to react with Acid Orange 12 in the same way as the model systems (selected to represent three types of heat damage: ‘advanced’ and ‘early’ Maillard and protein–protein damage).

5. Remazol blue binding values and fluorodinitrobenzene (FDNB)-reactive lysine values were similarly reduced in materials that had been severely heated, either with or without added sugars; however, when protein and glucose had reacted under mild conditions the fall in Remazol blue binding was less than that in FDNB-reactive lysine.

6. For the model materials, binding with cresol red was, in general, higher for heated samples but the results showed no correlation with FDNB-reactive lysine values. For meat and groundnut meals, changes in values after heat treatment were smaller than those that have been reported for soya-bean meals.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Anantharaman, K. & Carpenter, K. J. (1971). J. Sci. Fd Agric. 22, 412.CrossRefGoogle Scholar
Ascarelli, I. & Gestetner, B. (1962). J. Sci. Fd Agric. 13, 401.CrossRefGoogle Scholar
Ashworth, U. S. (1966). J. Dairy Sci. 49, 133.CrossRefGoogle Scholar
Ashworth, U. S. (1971 a). J. Fd Sci. 33, 509.CrossRefGoogle Scholar
Ashworth, U. S. (1971 b). J. Dairy Sci. 54, 952.Google Scholar
Ashworth, U. S. & Chaudry, M. A. (1962). J. Dairy Sci. 45, 952.CrossRefGoogle Scholar
Asquith, R. S. & Chan, D. K. (1971). J. Soc. Dyers Colour. 87, 181.CrossRefGoogle Scholar
Atkinson, J. & Carpenter, K. J. (1970). J. Sci. Fd Agric. 21, 366.CrossRefGoogle Scholar
Bjarnason, J. & Carpenter, K. J. (1969). Br. J. Nutr. 23, 859.CrossRefGoogle Scholar
Bjarnason, J. & Carpenter, K. J. (1970). Br. J. Nutr. 24, 313.CrossRefGoogle Scholar
Booth, V. H. (1971). J. Sci. Fd Agric. 22, 658.CrossRefGoogle Scholar
Boyne, A. W., Carpenter, K. J. & Woodham, A. A. (1961). J. Sci. Fd Agric. 12, 832.CrossRefGoogle Scholar
Bunyan, J. & Price, S. A. (1960). J. Sci. Fd Agric. 11, 25.CrossRefGoogle Scholar
Carpenter, K. J. (1960). Biochem. J. 77, 604.CrossRefGoogle Scholar
Choppe, W. & Kratzer, F. H. (1963). Poult. Sci. 42, 642.CrossRefGoogle Scholar
Donoso, G., Lewis, O. A. M., Miller, D. S. & Payne, P. R. (1962). J. Sci. Fd Agric. 13, 192.CrossRefGoogle Scholar
Eastoe, J. E. (1955). Biochem. J. 61, 589.CrossRefGoogle Scholar
Evans, R. J. & Butts, H. A. (1949). Science, N.Y. 109, 569.CrossRefGoogle Scholar
FAO (1970). Amino Acid Content of Foods and Biological Data on Proteins. Rome: FAO.Google Scholar
Finot, P. A. & Mauron, J. (1972). Helv. chim. Acta 55, 1153.CrossRefGoogle Scholar
Fraenkel-Conrat, H. & Cooper, M. (1944). J. biol. Chem. 154, 239.CrossRefGoogle Scholar
Frölich, A. (1954). Nature, Lond. 174, 879.CrossRefGoogle Scholar
Hagberg, A. & Karlsson, K. E. (1968). FAO/IAEA Pancl for New Approaches to Breeding for Plant Protein Improvement, Rostanga, Sweden p. 17.Google Scholar
Henry, K. M., Kon, S. K., Lea, C. H. & White, J. C. D. (1948). J. Dairy Res. 15, 292.CrossRefGoogle Scholar
Hurrell, R. F. & Carpenter, K. J. (1974 a). Proc. Nutr. Soc. 33, 13A.Google Scholar
Hurrell, R. F. & Carpenter, K. J. (1974 b). Br. J. Nutr. 32, 589.CrossRefGoogle Scholar
Jacobsen, E. E., Møller, A., Nielsen, J. J., Schmidtsdorff, N. & Weidner, K. E. (1972). Evaluation of the Dye-Binding Method as a Tool for the Practical Check of Fishmeal Quality. Hillerød, Denmark: A/SN Foss Electric.Google Scholar
Kaul, A. K., Dhar, R. D. & Raghaviah, P. (1970). J. Sci. Fd Technol. 7, 11.Google Scholar
Lakin, A. L. (1973). In Proteins in Human Nutrition p. 179 [Porter, J. W. G. and Rolls, B. A., editors] London: Academic Press.Google Scholar
Lea, C. H. & Hannan, R. S. (1950). Biochim. biophys. Acta 5, 433.CrossRefGoogle Scholar
Moran, E. T. jr, Jensen, L. S. & McGinnis, J. (1963). J. Nutr. 79, 239.CrossRefGoogle Scholar
Mauron, J. & Mottu, F. (1962). J. agric. Fd Chem. 10, 512.CrossRefGoogle Scholar
Mossberg, R. (1965). Agric. hort. Genet. 23, 206.Google Scholar
Mossberg, R. (1966). Agric. hort. Genet. 24, 193.Google Scholar
Mossberg, R. (1968). FAO/IAEA Panel for New Approaches to Breeding for Plant Protein Improvement, Rostanga, Sweden p. 151.Google Scholar
Ney, K. H. & Wirotama, I. P. G. (1970). Z. Lebensmittelunters. u. -Forsch. 144, 92.Google Scholar
Olomucki, E. & Bornstein, S. (1960). J. Ass. Fd agric. Chem. 43, 440.Google Scholar
Pomeranz, Y. (1965). J. Fd Sci. 30, 307.CrossRefGoogle Scholar
Pruss, H. D. & Ney, K. H. (1972). Z. Lebensmittelunters. u. -Forsch. 148, 347.CrossRefGoogle Scholar
Roach, A. G., Sanderson, P. & Williams, D. R. (1967). J. Sci. Fd Agric. 18, 274.CrossRefGoogle Scholar
Sandler, L. (1972). Rep. Fishg Ind. Res. Inst., Cape Tn 26, 32.Google Scholar
Shore, J. (1968). J. Soc. Dyers Colour. 84, 408.CrossRefGoogle Scholar
Skurray, G. R. & Cumming, R. B. (1974 a). J. Sci. Fd Agric. 25, 521.CrossRefGoogle Scholar
Skurray, G. R. & Cumming, R. B. (1974 b). J. Sci. Fd Agric. 25, 529.CrossRefGoogle Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analyt. Chem. 30, 1185.CrossRefGoogle Scholar
Udy, D. C. (1954). Cereal Chem. 31, 309.Google Scholar
Udy, D. C. (1956). Cereal Chem. 33, 150.Google Scholar
Varnish, S. A. (1971). Nutritional studies on heat-damaged protein. PhD Thesis, University of Cambridge.Google Scholar