Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T04:46:22.307Z Has data issue: false hasContentIssue false

Vitamin E and stress

4.* The metabolism of D-α-tocopherol during nutritional hepatic necrosis in the rat and the effects of selenium, methiodne and unsaturated fatty acids

Published online by Cambridge University Press:  09 March 2007

J. Green
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
A. T. Diplock
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
J. Bunyan
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
I. R. Muthy
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
D. Mchale
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Liver necrosis was produced in rats given diets deficient in selenium and vitamin E and the metabolism of [5-Me-14C]D-α-tocopherol was studied during the development of the disease. 2. When a torula yeast diet (containing sufficient of the yeast to provide essential fatty acids) was used, the addition of 5 % cod-liver oil fatty acid methyl esters produced only a slight decrease in the time taken to produce the disease, compared to controls given methyl oleate; methionine had little protective effect. The metabolism of the radioactive tocopherol was unaffected by dietary lipid, Se or methionine and was not influenced by the development of necrosis. 3. When a casein diet (devoid of fat and containing insufficient Se to prevent liver necrosis) was used, the addition of small amounts of linoleic acid to the diet (as 2 % maize oil fatty acid methyl esters) decreased the time taken to produce the disease and increased its incidence. However, the metabolism of the radioactive tocopherol was independent of dietary lipid or Se. 4. It would appear that either Se or vitamin E may be necessary for effective utilization of the ratapos;s requirement for linoleic acid.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Bieri, J. G. (1964). Biochem. Pharmac. 13, 1465.CrossRefGoogle Scholar
Bunyan, J., Green, J., Diplock, A. T. & Robinson, D. (1967). Br. J. Nutr. 21, 147.CrossRefGoogle Scholar
Bunyan, J., McHale, D., & Green, J. (1963). Br. J. Nutr. 17, 391.CrossRefGoogle Scholar
Bunyan, J., Murrell, E. A., Green, J. & Diplock, A. T. (1967). Br. J. Nutr. 21, 475.CrossRefGoogle Scholar
Caldwell, K.A. & Tappel, A. L. (1965). Archs Biochem. Biophys. 112, 196.CrossRefGoogle Scholar
Calvert, C. C., Nesheim, M. C. & Scott, M. L. (1962). Proc. Soc. exp. Biol. Med. 109, 16.CrossRefGoogle Scholar
Dam, H. & Granados, H. (1951). Acta pharmac. tox. 7, no. 2, p. 181.CrossRefGoogle Scholar
Desai, I. D. & Scott, M. L. (1965). Archs Biochem. Biophys. 110, 309.CrossRefGoogle Scholar
Diplock, A. T., Bunyan, J., McHale, D. & Green, J. (1967). Br. J. Nutr. 21, 103.CrossRefGoogle Scholar
Diplock, A. T., Green, J., Bunyan, J., McHale, D. & Muthy, I. R. (1967). Br. J. Nutr. 21, 115.CrossRefGoogle Scholar
Erwin, E. S., Sterner, W., Gordon, R. S., Machlin, L. J. & Tureen, L. L. (1961). J. Nutr. 75, 45.CrossRefGoogle Scholar
Goettsch, M. (1951). J. Nutr. 44, 443.CrossRefGoogle Scholar
Green, J., Diplock, A. T., Bunyan, J., McHale, D. & Muthy, I. R. (1967). Br. J. Nutr. 21, 69.CrossRefGoogle Scholar
György, P., Stokes, J. Jr, Goldblatt, H. & Popper, H. (1951). J. exp. Med. 93, 513.CrossRefGoogle Scholar
Hamilton, J. W. & Tappel, A. L. (1963). J. Nutr. 79, 493.CrossRefGoogle Scholar
Harris, P. L. & Mason, K. E. (1956). Int. Congr. Vitam. E. III. Venice, 1955, p. 1.Google Scholar
Hove, E. L. & Harris, P. L. (1946).J. Nutr. 31, 699.CrossRefGoogle Scholar
McLean, J. R. & Beveridge, J. M. R. (1952). J. Nutr. 47, 41.CrossRefGoogle Scholar
McLean, J. R. & Beveridge, J. M. R. (1954). J. Nutr. 52, 499.CrossRefGoogle Scholar
Schwarz, K. (1944). Hoppe-Seyler's Z. Physiol. Chem. 281, 101.CrossRefGoogle Scholar
Schwarz, K. (1965). Fedn Proc. Fedn Am. Socs exp. Biol. 24, 58.Google Scholar
Schwarz, K. & Foltz, C. M. (1957). J. Am. chem. Soc. 79, 3292.CrossRefGoogle Scholar
Shimazu, F. & Tappel, A. L. (1964). Science, N.Y. 143, 369.CrossRefGoogle Scholar
Tappel, A. L. (1965). Fedn Proc. Fedn Am. Socs exp. Biol. 24, 73.Google Scholar
Valberg, L. S., Young, R. A. & Beveridge, J. M. R. (1959). Can.J. Biochem. Physiol. 37, 493.CrossRefGoogle Scholar
Witting, L. A. & Horwitt, M.K. (1964). J. Nutr. 82, 19.CrossRefGoogle Scholar