Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T07:08:22.976Z Has data issue: false hasContentIssue false

Vitamin E and stress

3. The metabolism of D-α-tocopherol in the rat under dietary stress with silver

Published online by Cambridge University Press:  09 March 2007

A. T. Diplock
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
J. Green
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
J. Bunyan
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
D. Mchale
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
I. R. Muthy
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. When weanling rats were given a vitamin E-deficient diet and 0.15% (w/v) silver acetate in their drinking water, there was a high incidence of liver necrosis and death after 2–4 weeks. This was prevented by 120 ppm D-α-tocopheryl acetate in the diet, was partially prevented by selenium at 1 ppm but not at 0.05 ppm and was only marginally prevented by 0.15% DL-methionhe.

2. All these effects were observed when the diet was free of fat and when it contained either methyl oleate or polyunsaturated methyl esters. The polyunsaturated lipid slightly increased the velocity of the terminal illness.

3. In spite of the ‘anti-vitamin E’ effect of Ag and the clear demonstration that α-tocopherol played a major part in preventing toxicity, experiments with tracer amounts of [5-Me-14C]-D-α-tocopherol showed that rather than there being any destruction of tocopherol in the critical period preceding the onset of disease, there was an increase in tocopherol in the liver due to Ag administation. The metabolism of tocopherol in the remainder of the animal was unaffected during the pre-necrotic phase.

4. The results are inconsistent with the view that the stress induced by Ag is caused by a pro-oxidant effect, either in the gastro-intestinal tract or in the tissues of the rat. They show that lipid peroxidation is not a causal factor in the aetiology of Ag-induced liver necrosis and suggest that stress in the vitamin E-deficient animal probably raises the requirement for tocopherol.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Allison, A. C., Moore, T. & Sharman, I. M. (1956). Br. J. Haemat. 2, 197.CrossRefGoogle Scholar
Bangham, A. D., Rees, K. R. & Shotlander, V. (1962). Nature, Lond. 193, 754.CrossRefGoogle Scholar
Bunyan, J., McHale, D. & Green, J. (1963). Br. J. Nutr. 17, 391.CrossRefGoogle Scholar
Dam, H., Nielsen, G. K., Prange, I. & Søndergaard, E. (1958). Nature, Lond. 182, 802.CrossRefGoogle Scholar
Diplock, A. T., Bunyan, J., McHale, D. & Green, J. (1967). Br. J. Nutr. 21, 103.CrossRefGoogle Scholar
Eger, (1956). Virchows Arch. Path. Anat. Physiol. 328, 536.CrossRefGoogle Scholar
Ferrando, R. (1956). Int. Congr. Vitam. E. III. Venice, 1955, p. 598.Google Scholar
Green, J., Diplock, A. T., Bunyan, J., McHale, D. & Muthy, I. (1967). Br. J. Nutr. 21, 69.CrossRefGoogle Scholar
Hardin, J. O. & Hove, E. L. (1951). Proc. Soc. exp. Biol. Med. 78, 728.CrossRefGoogle Scholar
Harris, P. L. & Mason, K. E. (1956). Int. congr. Vitam. E. III. Venice, 1955, p. 1.Google Scholar
Hickman, K. C. D., Kaley, M. W. & Harris, P. L. (1944). f. biol. Chem. 152, 321.CrossRefGoogle Scholar
Hove, E. L. (1949). Ann. N.Y. Acad. Sci. 52, 217.CrossRefGoogle Scholar
Hove, E. L. (1953 a). J. Nutr. 51, 609.CrossRefGoogle Scholar
Hove, E. L. (1953 b). J. Nutr. 50, 361.CrossRefGoogle Scholar
Hove, E. L. (1955). Am. J. clin. Nutr. 3, 328.CrossRefGoogle Scholar
Hove, E. L. & Hardin, J. O. (1951). Proc. exp. Biol. Med. 77, 502.CrossRefGoogle Scholar
Hove, E. L., Hickman, K. C. D. & Harris, P. L. (1945). Archs Biochem. 8, 392.Google Scholar
Lombardi, B. (1965). Fedn Proc. Fedn Am.Socs exp. Biol. 24, 1200.Google Scholar
Mason, K. E. (1953). In Vitamin E in Early Life, p. 179.[Herriott, R. M., editor]. Baltimore: The Johns Hopkins Press.Google Scholar
Miller, R. F., Small, G. & Norris, L. C. (1955). J. Nutr. 55, 81.CrossRefGoogle Scholar
Myers, D. K. & Mulder, H. E. W. (1953 a). Nature, Lond. 172, 773.CrossRefGoogle Scholar
Myers, D. K. & Mulder, H. E. W. (1953 b). Biochem. J. 55, i.CrossRefGoogle Scholar
Priest, R. E., Smuckler, E. A., Iseri, O. A. & Benditt, E. P. (1962). Proc. Soc.exp. Biol. Med. 111, 50.CrossRefGoogle Scholar
Sellers, E. A., You, R. W. & Lucas, C. C. (1950). Proc. Soc.exp. Biol. Med. 75, 118.CrossRefGoogle Scholar
Shaver, S. L. & Mason, K. E. (1951). Anat. Rec. 109, 383.Google Scholar
Tappel, A. L. (1962). Vitams Horm. 20, 493.CrossRefGoogle Scholar
Taylor, D. W. (1956). J. Physiol., Lond. 131, 200.CrossRefGoogle Scholar
Telford, I. R., Wiswell, O. B. & Smith, E. L. (1954). Proc. Soc.exp. Biol. Med. 87, 162.CrossRefGoogle Scholar