Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T07:13:24.975Z Has data issue: false hasContentIssue false

Vitamin E and stress

5*. The effect of high and low oxygen tension on the metabolism of [14C]D-α-tocopherol in the vitamin E-deficient rat

Published online by Cambridge University Press:  09 March 2007

M. A. Cawthorne
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
A. T. Diplock
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
I. R. Muthy
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
J. Bunyan
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
Elspeth A. Murrell
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
J. Green
Affiliation:
Walton Oaks Experimental Station, Vitamins Ltd, Tadworth, Surrey
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Vitamin E-deficient rats were found to be more susceptible than vitamin E-supplemented controls to the toxic effects of hyperbaric oxygen (60 lb/in.2 for 20 min). This agrees with the findings of other workers.

2. Hyperbaric O2 treatment did not increase the metabolic destruction of a small amount (46.65 μg) of [14C-5-Me]D-α-tocopherol given to adult vitamin E-deficient rats 24 h previously. The O2 treatment also did not affect the soluble sulphydryl compounds and ascorbic acid of rat liver, nor the percentag haemolysis in vivo of rat blood.

3. Hyperbaric O2 treatment did not increase the true lipid peroxide content of rat brain, compared to control rats treated with hyperbaric air, which has no toxic effects. Increases in ‘lipid peroxidation’ reported by previous workers are considered to have been due to the use of inadequate controls (untreated rats) and of in vitro techniques that are open to criticism.

4. The toxic effects of hyperbaric O2 in the vitamin E-deficient rat cannot be attributed to peroxidation in vivo.

5. Vitamin E was not found to protect rats against the effects of reduced O2 tension (anoxic anoxia). This finding contrasts with some reports by earlier workers. Reduced O2 tension had no effect on the metabolism of radioactive tocopherol, on blood haemolysis in vivo, or on the soluble sulphydryl compounds and ascorbic acid of liver.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Bunyan, J., Green, J., Diplock, A. T. & Robinson, D. (1967). Br. J. Nutr. 21, 137.CrossRefGoogle Scholar
Bunyan, J., McHale, D. & Green, J. (1963). Br. J. Nutr. 17, 391.CrossRefGoogle Scholar
Bunyan, J., Murrell, E. A., Green, J. & Diplock, A. T. (1967). Br. J. Nutr. 21, 475.CrossRefGoogle Scholar
Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P. & Fenn, W. O. (1954). Science, N. Y. 119, 623.CrossRefGoogle Scholar
Gerschman, R., Gilbert, D. L., Nye, S. W. & Fenn, W. O. (1954). Proc. Soc. exp. Biol. Med. 86, 27.CrossRefGoogle Scholar
Gerschman, R., Gilbert, D. L., Nye, S. W. & Fenn, W. O. (1955). Fedn Proc. Fedn Am. Socs exp. Biol. 14, 56.Google Scholar
Green, J., Diplock, A. T., Bunyan, J., McHale, D. & Muthy, I. R. (1967). Br. J. Nutr. 21, 69.CrossRefGoogle Scholar
Horgan, V. J. & Philpot, J. St L. (1961). Nature, Lond. 192, 662.CrossRefGoogle Scholar
Hove, E. L., Hickman, K. & Harris, P. L. (1945). Archs Biochem. 8, 395.Google Scholar
Jamieson, D. & van den Brenk, H. A. S. (1964). Biochem. Pharmacol. 13, 159.CrossRefGoogle Scholar
Kann, H. E. JrMengel, C. E., Smith, W. & Horton, B. (1964). Aerospace Med. 35, 840.Google Scholar
Kokatnur, M. G., Bergan, J. C. & Draper, H. H. (1966). Proc. Soc. exp. Biol. Med. 123, 254.CrossRefGoogle Scholar
Placer, Z. A., Cushman, L. L. & Johnson, B. C. (1966). Analyt. Biochem. 16, 359.CrossRefGoogle Scholar
Puig Muset, P. & Valdecasas, F. G. (1946). Trab. Inst. nac. Cienc. méd., Madr. 6, 389.Google Scholar
Rose, C. S. & György, P. (1950). Proc. Soc. exp. Biol. Med. 74, 411.CrossRefGoogle Scholar
Taylor, D. W. (1953). J. Physiol., Lond. 121, 47P.Google Scholar
Taylor, D. W. (1956). J. Physiol., Lond. 131, 200.CrossRefGoogle Scholar
Taylor, D. W. (1957). J. Physiol., Lond. 135, 60P.Google Scholar
Taylor, D. W. (1958 a). J. Physiol., Lond. 140, 23.CrossRefGoogle Scholar
Taylor, D. W. (1958 b). J. Physiol., Lond. 140, 37.CrossRefGoogle Scholar
Telford, I. R., Wiswell, O. B. & Smith, E. L. (1954). Proc. Soc. exp. Biol. Med. 87, 162.CrossRefGoogle Scholar
Zirkle, L. G. Jr, Mengel, C. E., Horton, B. D. & Duffy, E. J. (1965). Aerospace Med. 36, 1027.Google Scholar