Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T04:31:09.688Z Has data issue: false hasContentIssue false

Whole-body albumin mass and distribution in rats fed on low-protein diets

Published online by Cambridge University Press:  06 August 2007

W. A. Coward
Affiliation:
MRC Dunn Nutrition Unit, Dunn Nutritional Laboratory, University of Cambridge and Medical Research Council, Milton Road, Cambridge CB4 1XJ
M. B. Sawyer
Affiliation:
MRC Dunn Nutrition Unit, Dunn Nutritional Laboratory, University of Cambridge and Medical Research Council, Milton Road, Cambridge CB4 1XJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. From 5 weeks of age, control and experimental rats were given diets containing 210 and 31 g protein/kg respectively, and killed for analysis at 0, 2, 5, 8, 12 and 20 d after the start of the experiment. At these times estimates were made of plasma albumin concentration, plasma volume and total vascular and extravascular albumin mass.

2. Plasma albumin concentrations were significantly lower in the experimental animals when compared to controls at 8, 12 and 20 d but plasma volumes (ml/kg body-weight) tended to be greater in the former animals. Total vascular albumin mass (g/kg body-weight) was significantly less in experimental animals compared to controls at 8 and 20 d, but was significantly reduced below values at 0 d only at 20 d.

3. Extravascular albumin mass (g/kg body-weight) was significantly lower in experimental animals in comparison with controls at 2, 5, 8, 12 and 20 d and significantly reduced below values at 0 d at 5, 8, 12 and 20 d.

4. Whole-body albumin mass was significantly reduced at 5, 8, 12 and 20 d when compared both with controls killed at the same time and animals killed at 0 d. Measurement of the ratio, extravascular albumin mass: vascular albumin mass indicated a significant redistribution of whole-body albumin mass at 5 and 20 d and mean values for this ratio were always lower in experimental animals than in controls.

5. It was concluded that measurement of plasma albumin concentration does not indicate the true extent of whole-body albumin losses in protein deficiency since total vascular albumin mass is, to some extent, maintained at the expense of extravascular albumin mass.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1977

References

REFERENCES

Alleyne, G. A. O. (1966). Archs Dis. Childh. 41, 313.CrossRefGoogle Scholar
Altman, P. L. & Dittmer, D. S. (1961). Blood and Other Body Fluids. Washington, DC: Federation of the American Society of Experimental Biologists.Google Scholar
Belcher, E. H. & Harriss, E. B. (1957). J. Physiol., Lond. 139, 64.CrossRefGoogle Scholar
Cohen, S. & Hansen, J. D. L. (1962). Clin. Sci. 23, 351.Google Scholar
Coward, W. A. (1975). Br. J. Nutr. 34, 459.CrossRefGoogle Scholar
Deo, M. G., Bahn, A. K. & Ramalingaswami, V. (1974). J. Nutr. 104, 858.CrossRefGoogle Scholar
Fomichev, Y. P. (1972). Sel'khoz. biol. 7, 38.Google Scholar
Freeman, T. & Gordon, A. H. (1964). Clin. Sci. 26, 17.Google Scholar
Garcia, J. F. (1957). Am. J. Physiol. 190, 19.CrossRefGoogle Scholar
Gómez, F., Rámos-Galván, R., Cravioto Moñóz, J. M. & Bienvenú, B. (1950). Boln méd. Hosp. infant., Méx. 7, 514.Google Scholar
Hay, R. W., Whitehead, R. G. & Spicer, C. C. (1975). Lancet, ii, 427.CrossRefGoogle Scholar
Hoffenberg, R., Black, E. & Brock, J. F. (1966). J. clin. Invest. 45, 143.CrossRefGoogle Scholar
James, W. P. T. & Hay, A. M. (1968). J. clin. Invest. 47, 1958.CrossRefGoogle Scholar
Katz, J., Bonorris, G., Golden, S. & Sellers, A. L. (1970). Clin. Sci. 39, 705.CrossRefGoogle Scholar
Kudlička, V. & Kudličkova, V. (1973). Nutr. Rep. int. 8, 111.Google Scholar
Laurell, C. B. (1966). Analyt. Biochem. 15, 45.CrossRefGoogle Scholar
Lippman, R. W. (1947). Proc. Soc. exp. Biol. Med. 66, 188.CrossRefGoogle Scholar
Lunn, P. G., Whitehead, R. G. & Baker, B. A. (1976). Br. J. Nutr. 36, 219.CrossRefGoogle Scholar
Matthews, C. M. E. (1961). J. clin. Invest. 40, 603.CrossRefGoogle Scholar
Metcoff, J. & Favour, C. B. (1944). Am. J. Physiol. 141, 695.CrossRefGoogle Scholar
Payne, P. R. & Done, J. (1959). Proc. Nutr. Soc. 18, vi.Google Scholar
Schultze, H. E. & Heremans, J. F. (1966). Molecular Biology of Human Proteins, Vol. 1. Amsterdam, London and New York: Elsevier.Google Scholar
Sellers, A. L., Katz, J., Bonorris, G. & Okuyama, S. (1966). J. Lab. clin. Med. 68, 177.Google Scholar
Shakir, A., Hindawi, A. Y. & El-Bedri, A. L. (1971). Br. J. Nutr. 26, 227.CrossRefGoogle Scholar
Wang, C. F. & Hegsted, D. M. (1949). Am. J. Physiol. 156, 218.CrossRefGoogle Scholar
Wasserman, K., Joseph, J. D. & Mayerson, H. S. (1956). Am. J. Physiol. 184, 175.CrossRefGoogle Scholar
Whitehead, R. G., Coward, W. A. & Lunn, P. G. (1973). Lancet i, 63.CrossRefGoogle Scholar
Yuile, C. L., Lucas, F. V., Neubecker, R. D., Cochrane, C. G. & Whipple, G. H. (1959). J. exp. Med. 109, 165.CrossRefGoogle Scholar