Published online by Cambridge University Press: 10 July 2009
The biology of Anopheles claviger (Mg.) was studied for a varying number of years in three localities in southern England. The fluctuations in the proportions of the larval instars and pupae were studied by weekly sampling throughout the year. The population overwintered from October to April as pre-adults, and in mid-winter larval development was arrested, but was resumed in March. The construction of a simple life-table showed the existence of a large mortality of immature stages during the overwintering period. Females were sampled at two localities by human bait catches, and at one also by insect suction traps. There was an interval of 1–2 weeks between adult emergences in April and blood-feeding, during which time females apparently fed on sugar solutions. Maximum biting densities of nullipars in May and September showed that A. claviger was bivoltine. The physiological age structure of the population showed that most parous adults at bait had oviposited only once or twice, but a few females had laid four batches. Live Hygrobatid-type mites proved reliable in indicating nulliparity. Mature larvae developed in the eggs 5–7 days after oviposition and while most eggs hatched within the next three days, a few remained unhatched until the 30th day. Females of the second generation (September) laid fewer eggs than those of the first generation (May). About six days were required for blood digestion, and females supplied with sugar were able to live 46 days. The marked delays between successive gonotrophic cycles in natural populations would make parous rates unreliable for the estimation of daily mortalities.