Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T23:47:08.948Z Has data issue: false hasContentIssue false

Detecting Cacopsylla pyricola (Hemiptera: Psyllidae) in predator guts using COI mitochondrial markers

Published online by Cambridge University Press:  09 March 2007

N. Agustí*
Affiliation:
Department of Environmental Science, Policy and Management (ESPM), Division of Insect Biology, University of California, 201 Wellman Hall, Berkeley, CA 94720, USA
T.R. Unruh
Affiliation:
Yakima Agricultural Research Laboratory, USDA-ARS, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
S.C. Welter
Affiliation:
Department of Environmental Science, Policy and Management (ESPM), Division of Insect Biology, University of California, 201 Wellman Hall, Berkeley, CA 94720, USA
*
*Ecologie des populations et communautés, Institut National Agronomique Paris-Grignon (INA P-G), 16, rue Claude Bernard, 75231 Paris cedex 05, France Fax: 33 1 44087257 E-mail: Nuria.Agusti@inapg.inra.fr

Abstract

Cacopsylla pyricola (Förster) is one of the most important pests of pear in North America, where several native predators have been considered for integrated pest management (IPM) programmes. Two molecular markers of 271 and 188 bp were developed from C. pyricola cytochrome oxidase I (COI) fragments, in order to study the detection of this species in the gut of arthropod predators. Primer sensitivity and the detection period for pear psylla remains in the guts of Anthocoris tomentosus Pericart were determined. The sensitivity threshold was defined at 10-5 dilution of a C. pyricola fifth-instar nymph in all samples. Predator adults were evaluated immediately after ingestion of one to five C. pyricola nymphs (t = 0) and after 2, 4, 6, 8, 16, 24 and 32 h. Detection of the presence of C. pyricola DNA always lasted longer using the shorter fragment and was observed after 32 h of digestion using both markers. The primers amplifying the 188 bp fragment amplified all four psyllid species tested, whereas the primers designed to amplify the 271 bp fragment did so exclusively for C. pyricola and its close relative, Cacopsylla pyri (Linnaeus). Both primers failed to amplify DNA from representative species of the Coccinellidae, Chrysopidae, Hemerobiidae, Anthocoridae, Miridae, Salticidae, Aphididae, Tetranychidae and the Tortricidae, suggesting their suitability for general trophic studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agustí, N., Aramburu, J. & Gabarra, R. (1999a) Immunological detection of Helicoverpa armigera (Lepidoptera: Noctuidae) ingested by heteropteran predators: time-related decay and effect of meal size on detection period. Annals of the Entomological Society of America 92, 5662.CrossRefGoogle Scholar
Agustí, N., de Vicente, C. & Gabarra, R. (1999b) Development of sequence characterized amplified region (SCAR) markers of Helicoverpa armigera: a new polymerase chain reaction-based technique for predator gut analysis. Molecular Ecology 8, 14671474.CrossRefGoogle ScholarPubMed
Agustí, N., de Vicente, C. & Gabarra, R. (2000) Developing SCAR markers to study predation on Trialeurodes vaporariorum. Insect Molecular Biology 9, 263268.CrossRefGoogle ScholarPubMed
Artigues, M., Avilla, J., Jauset, A.M. & Sarasúa, M.J. (1996) Predators of Cacopsylla pyri in NE Spain. Heteroptera: Anthocoridae and Miridae. SROP/WPRS Bulletin 19, 231235.Google Scholar
Brower, A.V.Z. & DeSalle, R. (1994) Practical and theoretical considerations for choice of a DNA sequence in insect molecular systematics. Annals of the Entomological Society of America 87, 702716.Google Scholar
Burts, E.C., van den Baan, H.E. & Croft, B.A. (1989) Pyrethroid resistance in pear psylla, Psylla pyricola Förster (Homoptera: Psyllidae), and synergism of pyrethroids with piperonyl butoxide. Canadian Entomologist 121, 219223.CrossRefGoogle Scholar
Chen, Y., Giles, K.L., Payton, M.E. & Greenstone, M.H. (2000) Identifying key cereal aphid predators by molecular gut analysis. Molecular Ecology 9, 18871898.CrossRefGoogle ScholarPubMed
Dreistadt, S.H. & Hagen, K.S. (1994) Classical biological control of the Acacia psyllid, Acizzia uncatoides (Homoptera: Psyllidae), and predator–prey–plant interactions in the San Francisco Bay area. Biological Control 4, 319327.CrossRefGoogle Scholar
Fitcher, B.L. & Stephen, W.P. (1981) Time related decay in prey antigens ingested by the predator Podisus maculiventris (Hemiptera: Pentatomidae), as detected by ELISA. Oecologia 51, 404407.Google Scholar
Giller, P.S. (1986) The natural diet of the Notonectidae: field trials using electrophoresis. Ecological Entomology 11, 163172.Google Scholar
Greenstone, M.H. (1996) Serological analysis of arthropod predation: Past, present and future. pp. 265300. in Symondson, W.O.C. & Liddell, J.E., (Eds.) The ecology of agricultural pests: biochemical approaches. London: Chapman & Hall.Google Scholar
Greenstone, M.H. & Hunt, J.H. (1993) Determination of prey antigen half-life in Polistes metricus using a monoclonal antibody-based immunodot assay. Entomologia Experimentalis et Applicata 68, 17.CrossRefGoogle Scholar
Greenstone, M.H. & Morgan, C.E. (1989) Predation on Heliothis zea (Lepidoptera: Noctuidae): an instar-specific ELISA for stomach analysis. Annals of the Entomological Society of America 82, 4549.CrossRefGoogle Scholar
Gut, L.J., Westigard, P.H. & Liss, W.J. (1988) Arthropod colonization and community development on young pear trees in southern Oregon. Melanderia 46, 113.Google Scholar
Hagler, J.R. & Naranjo, S.E. (1996) Using gut content immunoassays to evaluate predaceous biological control agents: a case study. pp 383401. in Symondson, W.O.C. & Liddell, J.E., (Eds) The ecology of agricultural pests: biochemical approaches. London: Chapman & Hall.Google Scholar
Hagler, J.R. & Naranjo, S.E. (1997) Measuring the sensitivity of an indirect predator gut content ELISA: detectability of prey remains in relation to predator species, temperature, time and meal size. Biological Control 9, 112119.CrossRefGoogle Scholar
Hodkinson, I.D. (1984) The taxonomy, distribution and host-plant range of the pear feeding psyllids (Homoptera: Psyllides). In Bulletin OILB/SROP. pp 344.Google Scholar
Hoogendoorn, M. & Heimpel, G.E. (2001) PCR-based gut content analysis of insect predators: using ribosomal ITS-1 fragments from prey to estimate predation frequency. Molecular Ecology 10, 20592067.Google Scholar
Horton, D.R., Unruh, T.R. & Higbee, B.S. (1997) Predatory bugs for biological control of pear psylla. Good Fruit Grower. August, pp 2932.Google Scholar
Horton, D.R., Lewis, T.M., Hinojosa, T. & Broers, D.A. (1998) Photoperiod and reproductive diapause in the predatory bugs Anthocoris tomentosus, A. antevolens and Deraeocoris brevis (Heteroptera: Anthocoridae Miridae), with information on overwintering sex ratios. Annals of the Entomological Society of America 91, 8186.Google Scholar
Innis, M.A. & Gelfand, D.H. (1990) Optimization of PCRs. pp 312. in Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) In PCR protocols. San Diego: Academic Press.Google Scholar
Lister, A., Usher, M.B. & Block, W. (1987) Description and quantification of field attacks rates by predator mites: an example using an electrophoresis method with a species of Antarctic mite. Oecologia 72, 185191.CrossRefGoogle ScholarPubMed
Lövei, G.L., Monostori, E. & Ando, I. (1985) Digestion rate in relation to starvation in the larva of a carabid predator Poecilus cupreus. Entomologia Experimentalis et Applicata 37, pp 123127.Google Scholar
Luck, R.F., Sheppard, B.M. & Kenmore, P.E. (1999) Evaluation of biological control with experimental methods. pp 225242. in Bellows, T. & Fisher, T., (Eds). In Handbook of biological control. San Diego: Academic Press.CrossRefGoogle Scholar
Miliczky, E.R. & Calckins, C.O. (2001) Prey of the spider, Dictyna coloradensis, on apple, pear, and weeds in Central Washington (Araneae: Dictynidae). Pan-Pacific Entomology 7, 1927.Google Scholar
Murray, R.A. & Solomon, M.G. (1978) A rapid technique for analysing diets of invertebrate predators by electrophoresis. Annals of Applied Biology 90, 710.CrossRefGoogle Scholar
Naranjo, S.E. & Hagler, J.R. (1998) Characterizing and estimating the impact of heteropteran predation. pp 170197. in Colle, M. & Ruberson, J., (Eds) Predatory Heteroptera: their ecology and use in biological control. Lanham, Maryland: Entomological Society of America.Google Scholar
Saiki, R.K. (1990) Amplification of genomic DNA. pp 1320. in Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J., (Eds) PCR protocols. San Diego: Academic Press.Google Scholar
Sarasúa, M.J., Sola, N., Artigues, M. & Avilla, J. (1994) The role of Anthocoridae in the dynamics of Cacopsylla pyri populations in a commercial orchard without pesticides. SROP/WPRS Bulletin 17, 138141.Google Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Solomon, M.G., Fitzgerald, J.D. & Murray, R.A. (1996) Electrophoretic approaches to predator–prey interactions. pp. 457468 in Symondson, W.O.C. & Liddell, J.E. (Eds) The ecology of agricultural pests: biochemical approaches. London, Chapman & Hall.Google Scholar
Sopp, P.I. & Sunderland, K.D. (1989) Some factors affecting the detection period of aphid remains in predators using ELISA. Entomologia Experimentalis et Applicata 51, 1120.Google Scholar
Symondson, W.O.C. (2002) Molecular identification of prey in predator diets. Molecular Ecology 11, 627641.Google Scholar
Symondson, W.O.C. & Liddell, J.E. (1993) A monoclonal antibody for the detection of arionid slug remains in carabid predators. Biological Control 3, 207214.Google Scholar
Symondson, W.O.C. & Liddell, J.E. (1996) Polyclonal, monoclonal and engineered antibodies to investigate the role of predation in slug population dynamics. pp. 323345 in Symondson, W.O.C. & Liddell, J.E. (Eds) The ecology of agricultural pests: biochemical approaches. London, Chapman & Hall.Google Scholar
Symondson, W.O.C., Erickson, M.L., Liddell, J.E. & Jayawardena, K.G.I. (1999) Amplified detection, using a monoclonal antibody, of an aphid-specific epitope exposed during digestion in the gut of a predator. Insect Biochemistry and Molecular Biology 29, 873882.Google Scholar
Unruh, T.R. & Higbee, B.S. (1994) Releases of laboratory-reared predators of pear psylla demonstrate their importance in pest suppression. IOBC/WPRS Bulletin 17, 146150.Google Scholar
Unruh, T.R., Westigard, P.H. & Hagen, K.S. (1995) Pear psylla. pp 95100. Nechols, J.R., (Ed.) Biological control in the Western United States. DNR Publ. 3361, University of California: Oakland.Google Scholar
Unruh, T.R. (1990) Genetic structure among 18 west coast pear psylla populations: implications for the evolution of resistance. American Entomologist. Spring issue:, pp 3743.CrossRefGoogle Scholar
Westigard, P.H., Gut, L.J. & Liss, W.J. (1986) Selective control program for the pear pest complex in southern Oregon. Journal of Economical Entomology 79, 250257.Google Scholar
Zaidi, R.H., Jaal, Z., Hawkes, N.J., Hemingway, J. & Symondson, W.O.C. (1999) Can the detection of prey DNA amongst the gut contents of invertebrate predators provide a new technique for quantifying predation in the field?. Molecular Ecology 8, 20812088.CrossRefGoogle Scholar