Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T07:46:19.691Z Has data issue: false hasContentIssue false

Ecological and genetic aspects of grape phylloxera Daktulosphaira vitifoliae (Hemiptera: Phylloxeridae) performance on rootstock hosts

Published online by Cambridge University Press:  09 March 2007

A. Forneck*
Affiliation:
University of California Davis, Department of Viticulture and Enology, Davis, CA 95616, USA
M.A. Walker
Affiliation:
University of California Davis, Department of Viticulture and Enology, Davis, CA 95616, USA
R. Blaich
Affiliation:
Universität Hohenheim, Institut für Obst- Gemüse- und Weinbau, Fachgebiet Weinbau, 70593 Stuttgart, Germany
*
*present address: University of Hohenheim, Fachgebiet Weinbau (370), 70593 Stuttgart, Germany Fax: 49 711 459 3946 E-mail: aforneck@uni-hohenheim.de

Abstract

Performance and genetic variability of clonal lineages derived from one Californian and one German population of grape phylloxera, Daktulosphaira vitifoliae Fitch were studied on their natal grape rootstock host and on three novel hosts over four generations in an aseptic dual culture system. The ability of D. vitifoliae to adapt to new hosts was measured by changes in fitness (rm) over four generations. The performance of a given clonal lineage changed over successive generations, depending upon the host plant and the phylloxera group. Analysis of amplified fragment length polymorphism–polymerase chain reaction (AFLP–PCR) banding patterns from 40 individual parthenogenetic D. vitifoliae revealed equal levels of genetic variation both among the four clonal lineages analysed and within the different generations of one lineage. Analysis of molecular variance (AMOVA) showed no significant differences between the D. vitifoliae lineages reared on different host plants, nor was a correlation between host performance and genotype found.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blackman, R.L., Spence, J.M., Field, L.M. and Devonshire, A.L. (1995) Chromosomal location of the amplified esterase genes conferring resistance to insecticides in Myzus persicae (Homoptera; Aphididae). Heredity 75, 297302.CrossRefGoogle Scholar
Börner, C. (1943) Dreißig Jahre deutsche Rebenzüchtung. Bremer Beiträge zur Naturwissenschaft 7, 352.Google Scholar
Boubals, D. (1966) Etude de la distribution et des causes de la résistance au phylloxéra radicicole chez les Vitacées. Annales d'Amelioration des Plantes 16, 145185.Google Scholar
Boubals, D. (1994) Phylloxéra, attention! En Allemange, une race de phylloxéra radicole plus aggressive attaquerait les racines de SO4, 5BB, 5C et 125AA (tous riparia x berlandieri)! Le Progrès Viticole et Agricole 111, 374375.Google Scholar
Davidson, W. and Nougaret, R.L. (1921) The grape phylloxera in California. Bulletin of the US Department of Agriculture 42, 128.Google Scholar
De Barro, P.J., Sherratt, T.N., Brookes, C.P., David, O. and Maclean, N. (1995) Spatial and temporal genetic variation in British field populations of the grain aphid Sitobion avenae (F.) (Hemiptera: Aphididae) studied using RAPD-PCR. Proceedings of the Royal Society B 262, 321327.Google ScholarPubMed
De Barro, P.J., Sherratt, T.N., David, O. and Maclean, N. (1995) An investigation of the differential performance of clones of the aphid Sitobion avenae on two host species. Oecologia 104, 379385.CrossRefGoogle ScholarPubMed
De Benedictis, J.A., Granett, J. and Taormino, S.P. (1996) Differences in host utilization by California strains of grape phylloxera. American Journal of Enology and Viticulture 47, 373379.CrossRefGoogle Scholar
Dixon, A.F.G. (1985) Aphid ecology. New York, Chapman & Hall.Google Scholar
Downie, D.A. (1999) Performance of native grape phylloxera on host plants within and among terrestrial islands in Arizona, USA. Oecologia 121, 527536.CrossRefGoogle ScholarPubMed
Fenton, B., Birch, A.N.E., Malloch, G., Woodford, J.A.T. and Gonzalez, C. (1994) Molecular analysis of ribosomal DNA from the aphid Amphorophora idaei on an associated fungal organism. Insect Molecular Biology 3, 183190.CrossRefGoogle Scholar
Forneck, A., Walker, M.A. and Merkt, N. (1996) Development of an aseptic dual culture system for grapes (Vitis spp.) and grape phylloxera (Daktulosphaira vitifoliae Fitch). Vitis 35, 9597.Google Scholar
Forneck, A., Walker, M.A. and Blaich, R. (2000) Genetic structure of an introduced pest: phylloxera (Daktulosphaira vitifoliae Fitch) in Europe. Genome 43, 669678.CrossRefGoogle ScholarPubMed
Forneck, A., Walker, M.A. & Blaich, R. (2001a) An in vitro assessment of phylloxera (Dakutlosphaira vitifoliae Fitch) life cycle. Journal of Applied Entomology, (in press).CrossRefGoogle Scholar
Forneck, A., Walker, M.A., Blaich, R., Yvon, M. and Leclant, F. (2001) Interaction of phylloxera (Dakutlosphaira vitifoliae Fitch) with grape (Vitis spp.) in simple isolation chambers. American Journal of Enology and Viticulture 52, 2834.CrossRefGoogle Scholar
Futuyama, D.J. and Philippi, T.E. (1987) Genetic variation and covariation in responses to host plants by Alsophila pometaria (Lepidoptera: Geometridae). Evolution 42, 269279.CrossRefGoogle Scholar
Granett, J., Timper, P. and Lider, L.A. (1985) Grape phylloxera (Daktulosphaira vitifoliae) (Homoptera: Phylloxeridae) biotypes in California. California Agriculture 41, 1012.Google Scholar
Granett, J., Omer, A.D., Pessereau, P. and Walker, M.A. (1998) Fungal infections of grapevine roots in phylloxera-infested vineyards. Vitis 37, 3942.Google Scholar
Grzegorczyk, W. and Walker, M.A. (1997) Surface sterilization of grape phylloxera eggs in preparation for in vitro culture with Vitis species. American Journal of Enology and Viticulture 48, 157159.CrossRefGoogle Scholar
Hales, D.F., Tomiuk, J., Wöhrmann, K. and Sunnucks, P. (1997) Evolutionary and genetic aspects of aphid biology: a review. European Journal of Entomology 94, 155.Google Scholar
Hawthorne, D.J. and Via, S. (1994) Variation in performance on two grape cultivars within and among groups of grape phylloxera from wild and cultivated habitats. Entomologia Experimentalis et Applicata 70, 6376.CrossRefGoogle Scholar
Kocsis, L., Granett, J., Walker, M.A., Lin, H. and Omer, A.O. (1999) Grape phylloxera populations adapted to Vitis berlandieri x V. riparia rootstocks. American Journal of Enology and Viticulture 50, 101106.CrossRefGoogle Scholar
Komatsu, T. and Akimoto, S. (1995) Genetic differentiation as a result of adaptation to the phenologies of individual host trees in the galling aphid Kaltenbachiella japonica. Ecological Entomol 20, 3342.CrossRefGoogle Scholar
Lin, H. and Walker, M.A. (1996) Extraction of DNA from eggs of grape phylloxera (Daktulosphaira vitifoliae Fitch) for use in RAPD testing. Vitis 35, 8789.Google Scholar
Mopper, S. & Strauss, S.Y. (1998) Genetic structure and local adaptation in natural insect groups. New York, Chapman and Hall.Google Scholar
Rilling, G. (1966) Die Speicheldrüsen der Reblaus (Dactylosphaera vitifolii Shimer), Vitis 6, 136150.Google Scholar
Sandström, J. (1994) High variation in host plant adaptation among clones of the pea aphid, Acyrthosiphum pisum, on peas Pisum sativum. Entomologia Experimentalis et Applicata 71, 245256.CrossRefGoogle Scholar
Schäller, G. (1960) Untersuchungen über den Aminosäuregehalt des Speicheldrüsensekretes der Reblaus (Viteus [Phylloxera] Vitifolii Shimer), Homoptera. Entomologia Experimentalis et Applicata 3, 128136.CrossRefGoogle Scholar
Schneider, S., Kueffer, J.M., Roessli, D. & Excoffier, L. (1997) Arlequin ver. 1.1: A software for group genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.Google Scholar
Sneath, P.H.A. & Sokal, R.R. (1973) Numerical taxonomy. San Francisco, Freeman.Google Scholar
Stiling, P. & Rossi, A.M. (1998) Deme formation in a dispersive gall-forming midge. pp. 2236 in Mopper, S. & Strauss, S. (Eds) Genetic structure and local adaptation in natural insect groups. Chapman and Hall, New York.Google Scholar
Sunnucks, P., England, P.R., Taylor, A.C. and Hales, D.F. (1996) Microsatellite and chromosome evolution of parthenogenetic Sitobion aphids in Australia. Genetics 144, 747756.CrossRefGoogle ScholarPubMed
Sunnucks, P., Chisholm, D., Turak, E. and Hales, D.F. (1998) Evolution of an ecological trait in parthenogenetic Sitobion aphids. Heredity 81, 638647.CrossRefGoogle Scholar
Tajima, F. (1983) Evolutionary relationship of DNA sequences in finite groups. Genetics 105, 437460.CrossRefGoogle Scholar
Via, S. (1991) The genetic structure of host plant adaptation in a spatial patchwork: demographic variability among reciprocally transplanted pea aphid clones. Evolution 45, 827852.CrossRefGoogle Scholar
Vos, P., Hogers, R., Bleeker, M., Reihans, M., van de, Lee T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 44074414.CrossRefGoogle ScholarPubMed
Wyatt, I.J. and White, P.F. (1977) Simple estimation of intrinsic increase rates for aphids and tetranychid mites. Journal of Applied Ecology 14, 757766.CrossRefGoogle Scholar