Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T09:33:19.333Z Has data issue: false hasContentIssue false

Induction of resistance of corn plants to Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) by application of silicon and gibberellic acid

Published online by Cambridge University Press:  23 January 2017

R. Alvarenga
Affiliation:
Departamento de Entomologia, Lavras, Universidade Federal de Lavras, Minas Gerais, Brazil
J. C. Moraes
Affiliation:
Departamento de Entomologia, Lavras, Universidade Federal de Lavras, Minas Gerais, Brazil
A. M. Auad*
Affiliation:
Laboratório de Entomologia, Embrapa – Centro Nacional de Pesquisa de Gado de Leite, Juiz de Fora, Minas Gerais, Brazil
M. Coelho
Affiliation:
Departamento de Entomologia, Lavras, Universidade Federal de Lavras, Minas Gerais, Brazil
A. M. Nascimento
Affiliation:
Departamento de Entomologia, Lavras, Universidade Federal de Lavras, Minas Gerais, Brazil
*
*Author for correspondence Phone: (+55)03233117458 Fax: (+55)03233117532 E-mail: alexander.auad@embrapa.br

Abstract

The aim of this study was to evaluate the effects of silicon application and administration of the phytohormone gibberellic acid on resistance of the corn plants to the fall armyworm (FAW), Spodoptera frugiperda, and their vegetative characteristics. We evaluated larval and pupal duration, survival and biomass, and adult longevity, malformation and fecundity of S. frugiperda after feeding on plant matter treated with silicon and/or gibberellic acid. The feeding preference of FAW first-instar larvae, the total leaf area consumed by the insects, and the vegetative parameters of corn plants were also evaluated. No significant differences were observed in the measured parameters of larval and pupal stages of S. frugiperda in response to silicon or gibberellic acid. In adult stage insects, the number of eggs per female was significantly reduced in insects derived from larvae fed plants treated with silicon or gibberellic acid. In a non-preference test, 48 h after release, caterpillars preferred control untreated plants and consumed less matter from plants that had received hormonal treatment (gibberellic acid). Gibberellic acid also altered the vegetative characteristics of plants, by increasing their height, shoot fresh and dry mass, and silicon content. We conclude that gibberellic acid can alter the vegetative characteristics and silicon uptake of corn plants, leading to a reduction in their consumption by S. frugiperda larvae and a decrease in female insect oviposition.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdellaoui, K., Halima-Kamel, M.B., Acheuk, F., Soltani, N., Aribi, N. & Hamouda, M.H. (2013) Biochemical and histological effects of gibberellic acid on Locusta migratoria migratoria fifth instar larvae. Pesticide Biochemistry and Physiology 107, 3237.CrossRefGoogle ScholarPubMed
Altuntaş, H., Kılıç, A.Y., Uçkan, F. & Ergin, E. (2012) Effects of gibberellic acid on hemocytes of Galleria mellonella L. (Lepidoptera: Pyralidae). Environmental Entomology 41, 688696.Google Scholar
Assis, F.A., Moraes, J.C., Auad, A.M. & Coelho, M. (2013) The effects of foliar spray application of silicon on plant damage levels and components of larval biology of the pest butterfly Chlosyne lacinia saundersii (Nymphalidae). International Journal of Pest Management 59, 128134.CrossRefGoogle Scholar
Assis, F.A., Moraes, J.C., Assis, G.A. & Parolin, F.J.T. (2015) Induction of caterpillar resistance in sunflower using silicon and acibenzolar-S-methyl. Journal of Agricultural Science and Technology 17, 543550.Google Scholar
Awmack, C.S. & Leather, S.R. (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47, 817844.CrossRefGoogle ScholarPubMed
Ayres, M., Ayres Junior, M., Ayres, D.L. & Santos, A.S. (2003). BioEstat 3.0. Aplicações estatísticas nas áreas da Ciências Biológicas e Médicas. Belém, PA, Brasil, Sociedade Cívil Maramirauá.Google Scholar
Basagli, M.A., Moraes, J.C., Carvalho, G.A., Ecole, C.C. & Gonçalvs-Gervásio, R.D.C. (2003) Effect of sodium silicate application on the resistance of wheat plants to the green-aphids Schizaphis graminum (Rond.) (Hemiptera: Aphididae). Neotropical Entomology 32, 659663.Google Scholar
Bostrack, J.M. & Struckmeyer, B.E. (1967) Effect of gibberellic acid on the growth and anatomy of Coleus blumei, Antirrhinum majus and Salvia splendens . New Phytologist 66, 539544.CrossRefGoogle Scholar
Boughton, A.J., Hoover, K. & Felton, G.W. (2006) Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae . Entomologia Experimentalis et Applicata 120, 175188.Google Scholar
Bruce, T.J., Martin, J.L., Pickett, J.A., Pye, B.J., Smart, L.E. & Wadhams, L.J. (2003) cis-Jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae). Pest Management Science 59, 10311036.Google Scholar
Carvalho, S.P., Moraes, J.C. & Carvalho, J.G. (1999) Efeito do silício na resistência do sorgo (Sorghum bicolor) ao pulgão-verde Schizaphis graminum (Rond.) (Homoptera: Aphididae). Anais da Sociedade Entomológica do Brasil 28, 505510.Google Scholar
Carvalho, R.A., Omoto, C., Field, L.M., Williamson, M.S. & Bass, C. (2013) Investigating the molecular mechanism of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda . PLoS ONE 8, e62268.Google Scholar
Cottrell, T.E., Wood, B.W. & Ni, X. (2010) Application of plant growth regulators mitigates chlorotic foliar injury by the black pecan aphid (Hemiptera: Aphidae). Pest Management Science 66, 12361242.Google Scholar
Cruz, I. (1995) A lagarta-do-cartucho na cultura do milho. Sete Lagoas: EMBRAPA/CNPMS, 1995. (Circular técnica, 21).Google Scholar
Cruz, I. & Turpin, F.T. (1982) Efeitos da Spodoptera frugiperda em diferentes estádios de crescimento da cultura do milho. Pesquisa Agropecuária Brasileira 17, 355359.Google Scholar
De Souza, I.R.P. & MacAdam, J.W. (2001) Gibberellic acid and dwarfism effects on the growth dynamics of B73 maize (Zea mays L.) leaf blades: a transient increase in apoplastic peroxidase activity precedes cessation of cell elongation. Journal of Experimental Botany 52, 16731682.Google Scholar
Dias, P.A.S., Sampaio, M.V., Rodrigues, M.P., Korndörfer, A.P., Oliveira, R.S., Ferreira, S.E. & Korndörfer, G.H. (2014) Induction of resistance by silicon in wheat plants to alate and apterous morphs of Sitobion avenae (Hemiptera: Aphididae). Environmental Entomology 43, 949956.CrossRefGoogle ScholarPubMed
Dowd, F.P. & Johnson, E.T. (2009) Differential resistance of switchgrass Panicum virgatum L. lines to fall armyworms Spodoptera frugiperda (J.E. Smith). Genetic Resources and Crop Evolution 56, 10771089.CrossRefGoogle Scholar
Fauteux, F., Rémus-Borel, W., Menzies, J.G. & Bélanger, R.R. (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters 249, 16.CrossRefGoogle ScholarPubMed
Francis, D. & Sorrell, D.A. (2001) The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regulation 33, 112.Google Scholar
Ghorbanli, M., Kaveh, S.D. & Sepehr, M.F. (1999) Effects of cadmium and gibberellin on growth and photosyntesis of Glycine max . Photosynthetica 37, 627631.Google Scholar
Gomes, F.B., Moraes, J.C., Santos, C.D.D. & Antunes, C.S. (2008) Use of silicon as inductor of the resistance in potato to Myzus persicae (Sulzer) (Hemiptera: Aphididae). Neotropical Entomology 37, 185190.Google Scholar
Gordy, J.W., Leonard, B.R., Blouin, D., Davis, J.A. & Stout, M.J. (2015) Comparative effectiveness of potential elicitors of plant resistance against Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) in four crop plants. PLoS ONE 10, 114.Google Scholar
Goussain, M.M., Moraes, J.C., Carvalho, J.G., Nogueira, N.L. & Rossi, M.L. (2002) Efeito da aplicação de silício em plantas de milho no desenvolvimento biológico da lagarta do cartucho Spodoptera frugiperda (J.E. Smith) (Lepidoptera Noctuidae). Neotropical Entomology 31, 305310.CrossRefGoogle Scholar
Goussain, M.M., Prado, E. & Moraes, J.C. (2005) Effect of silicon applied to wheat plants on the biology and probing behaviour of the greenbug Schizaphis graminum (Rond.) (Hemiptera: Aphididae). Neotropical Entomology 34, 807813.CrossRefGoogle Scholar
Greene, G.L., Leppla, N.C. & Dickerson, W.A. (1976) Velvetbean caterpillar: a rearing procedure and artificial medium. Journal of Economic Entomology 69, 487488.Google Scholar
Greulach, V.A. & Haesloop, J.G. (1958) The influence of gibberellic acid on cell division and cell elongation in Phaseolus vulgaris . American Journal of Botany 45, 566570.Google Scholar
Grützmacher, A.D. (1999) Consumo foliar de cultivares de arroz irrigado por Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Annais da Sociedade Entomologica do Brasil 28, 519525.Google Scholar
Han, Y., Lei, W., Wen, L. & Hou, M. (2015) Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). PLoS ONE 4, e0120557.Google Scholar
He, W., Yang, M., Li, Z., Qiu, J., Qu, X., Qiu, Y. & Li, R. (2015) High levels of silicon provided as a nutrient in hydroponic culture enhances rice plant resistance to brown planthopper. Crop Protection 67, 2025.CrossRefGoogle Scholar
Hou, M. & Han, Y. (2010) Silicon-mediated rice plant resistance to the Asiatic Rice Borer (Lepidoptera: Crambidae): effects of silicon amendment and rice varietal resistance. Journal of Economic Entomology 103, 14121419.Google Scholar
Kaur, R. & Rup, P.J. (2002) Evaluation of regulatory influence of four plant growth regulators on the reproductive potential and longevity of melon fruit fly (Bactrocera cucurbitae). Phytoparasitica 30, 224230.Google Scholar
Kvedaras, O.L., An, M., Choi, Y.S. & Gurr, G.M. (2010) Silicon enhances natural enemy attraction and biological control through induced plant defences. Bulletin of Entomological Research 100, 367371.CrossRefGoogle ScholarPubMed
Lara, F.M. (1991) Princípios de Resistência de Plantas a Insetos. 2nd edn. São Paulo, Ícone. 336p.Google Scholar
Ma, J.F., Goto, S., Tamai, K. & Ichii, M. (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology 127, 17731780.Google Scholar
Ma, J.F., Yamaji, N., Tamai, K. & Mitani, N. (2007) Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiology 145, 919924.Google Scholar
Magalhães, P.C. & Durães, F.O.M. (2006) Fisiologia da produção de milho. Sete Lagoas, Embrapa Milho e Sorgo. Circular Técnica, 76.Google Scholar
Martins, R.G., de Camargo, P.R., Martins, M.B.G., Silva, J.M. & Araujo, D.K. (2012) Fontes e doses de giberelina no desempenho de arroz anão em biotestes. Comunicata Scientiae 3, 306309.Google Scholar
McCune, D.C. & Galston, A.W. (1959) Inverse effects of gibberellin on peroxidase activity and growth in dwarf strains of peas and corn. Plant Physiology 34, 416418.Google Scholar
Mendes, S.M., Boregas, K.G.B., Lopes, M.E., Waquil, M.S. & Waquil, J.M. (2011) Respostas da lagarta-do-cartucho a milho geneticamente modificado expressando a toxina Cry 1A (b). Pesquisa Agropecuária Brasileira 46, 239244.Google Scholar
Nascimento, A.M., Assis, F.A., Moraes, J.C. & Sakomura, R. (2014) Não preferência a Spodoptera frugiperda (Lepidoptera: Noctuidae) induzida em arroz pela aplicação de silício. Brazilian Journal of Agricultural Sciences/Revista Brasileira de Ciências Agrárias 9, 215218.Google Scholar
Parolin, F.J.T. (2012) Aspectos biológicos de Spodoptera frugiperda (J.E Smith, 1797) (Lepidoptera: Noctuidae) em milho sob efeito de silício, ácido giberélico GA3 e herbivoria prévia . 46 p. Dissertação (Mestrado em Entomologia), Universidade Federal de Lavras, Lavras.Google Scholar
Ranger, C.M., Singh, A.P., Frantz, J.M., Cañas, L., Locke, J.C., Reding, M.E. & Vorsa, N. (2009) Influence of silicon on resistance of Zinnia elegans to Myzus persicae (Hemiptera: Aphididae). Environmental Entomology 38, 129136.Google Scholar
Reynolds, O.L., Gurr, G., Padula, M. & Zeng, R. (2016) Silicon: potential to promote direct and indirect effects on plant defence against arthropod pests. Frontiers in Plant Science 7, 744.Google Scholar
Ribeiro, J.I. Jr. (2001) Análises estatísticas no SAEG. Viçosa, UFV.Google Scholar
Rood, S.B., Witbeck, T.J., Major, D.J. & Miller, F.R. (1992) Gibberellins and heterosis in sorghum. Crop Science 32, 713718.Google Scholar
Silva, A.A., Alvarenga, R., Moraes, J.C. & Alcantra, E. (2014) Biologia de Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) em algodoeiro de fibra colorida tratado com silício. EntomoBrasilis 7, 6568.Google Scholar
Stout, M.J., Workman, K.V. & Duffey, S.S. (1996) Identity, spatial distribution, and variability of induced chemical responses in tomato plants. Entomologia Experimentalis et Applicata 79, 255271.Google Scholar
Taiz, L. & Zeigler, E. (2004) Fisiologia vegetal. 3rd. edn. Porto Alegre, Artmed.Google Scholar
Tanimoto, E. (1987) Gibberellin-dependent root elongation in Lactuca sativa: recovery from growth retardant-suppressed elongation with thickening by low concentration of GA3 . Plant and Cell Physiology 28, 963973.Google Scholar
Tanimoto, E. (2012) Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. Annals of Botany 110, 373381.Google Scholar
Tatagiba, S.D., Rodrigues, F.A., Filippi, M.C.C., Silva, G.B. & Silva, L.C. (2014) Physiological responses of rice plants supplied with silicon to Monographella albescens infection. Journal of Phytopathology 162, 596606.Google Scholar
Tuna, A.L., Kaya, C., Dikilitas, M. & Higgs, D. (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany 62, 19.Google Scholar
Ulland, S., Ian, E., Mozuraitis, R., Borg-Karlson, A.K., Meadow, R. & Mustaparta, H. (2008) Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, Noctuidae). Chemical Senses 33, 3546.Google Scholar
Vilela, M., Moraes, J.C., Alves, E., Santos-Cividanes, T.M. & Santos, F.A. (2014) Induced resistance to Diatraea saccharalis (Lepidoptera: Crambidae) via silicon application in sugarcane. Revista Colombiana de Entomología 40, 4448.Google Scholar
Visscher, S.N. (1980) Regulation of grasshopper fecundity, longevity and egg viability by plant growth hormones. Experientia 36, 130131.Google Scholar
Whaley, W.G. & Kephart, J. (1956) Effect of gibberellic acid on growth of maize roots. Science 125, 234.Google Scholar
Ye, M., Song, Y., Long, J., Wang, R., Baerson, S.R., Pan, Z., Zhu-Salzman, K., Xie, J., Cai, K., Luo, S. & Zeng, R. (2013) Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proceedings of the National Academy of Sciences of the United States of America 110, 36313639.Google Scholar
Yoshida, S. (1981) Fundamentals of Rice Crop Science. Philippines, International Rice Research Institute.Google Scholar
Zimmermann, R., Sakai, H. & Hochholdinger, F. (2010) The giberelic acid stimulated-like gene family in maize and its role in lateral root development. Plant Physiology 152, 356365.CrossRefGoogle ScholarPubMed