Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T13:27:03.780Z Has data issue: false hasContentIssue false

Molecular evidence for multiple phylogenetic groups within two species of invasive spiny whiteflies and their parasitoid wasp

Published online by Cambridge University Press:  19 January 2016

R. Uesugi*
Affiliation:
Tea Pest Management Research Team, Department of Tea, NARO Institute of Vegetable and Tea Science (NIVTS), Kanaya-Shishidoi, Shimada, Shizuoka 428–8501, Japan
Y. Sato
Affiliation:
Tea Pest Management Research Team, Department of Tea, NARO Institute of Vegetable and Tea Science (NIVTS), Kanaya-Shishidoi, Shimada, Shizuoka 428–8501, Japan
B.-Y. Han
Affiliation:
College of Life Sciences, China Jiliang University, HangZhou, Zhejiang Province 310018, People's Republic of China
Z.-D. Huang
Affiliation:
Zhejiang Citrus Research Institute, No. 11 Daqiao Rd., Huangyan District, Taizhou, Zhejiang Province 318020, People's Republic of China
K. Yara
Affiliation:
Tea Pest Management Research Team, Department of Tea, NARO Institute of Vegetable and Tea Science (NIVTS), Kanaya-Shishidoi, Shimada, Shizuoka 428–8501, Japan
K. Furuhashi
Affiliation:
Agro-Kanesho Co., Ltd., Akasaka, Minato-ku, Tokyo 1070052, Japan
*
*Author for correspondence Phone: +81-547-45-4693 Fax: +81-547-45-4693 E-mail: uesugir@affrc.go.jp

Abstract

The invasive orange spiny whitefly (OSW) Aleurocanthus spiniferus has extended its distribution to non-native areas since the early 20th century. In a similar manner, the invasive tea spiny whitefly (TSW) A. camelliae has been expanding over East Asia in recent decades. In this study, the genetic diversity of OSW and TSW and of their important parasitoid wasp Encarsia smithi was investigated in China and Japan to enable more efficient biological control policies. We detected two phylogenetic groups (haplogroups A1 and A2) in OSW and three phylogenetic groups (haplotypes B1 and B2, and haplogroup B3) in TSW in China; however, only a single haplotype was detected in each whitefly species in Japan. Based on historical records and molecular data, OSW was considered to be native to China whereas TSW has probably expanded to China from a more southern location in the last 50 years; China appears to be the source region for OSW and TSW invading Japan. In E. smithi, two phylogenetic groups were detected in Japan: haplotype I, associated with OSW, and haplogroup II mostly associated with TSW, except in two locations. These data support the hypothesis that E. smithi parasitizing TSW in Japan did not originate from the existent population parasitizing OSW but was newly imported into Japan following the invasion of its host.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allendorf, F.W. & Lundquist, L.L. (2003) Introduction: population biology, evolution, and control of invasive species. Conservation Biology 17, 2430.Google Scholar
Babcock, C.S., Heraty, J.M., De Barro, P.J., Driver, F. & Schmidt, S. (2001) Preliminary phylogeny of Encarsia Förster (Hymenoptera: Aphelinidae) based on morphology and 28S rDNA. Molecular Phylogenetics and Evolution 18, 306323.Google Scholar
Bandelt, H.J., Forster, P. & Röhl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 3748.CrossRefGoogle ScholarPubMed
Beerli, P. (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22, 341345.Google Scholar
Bellows, T.S. (2001) Restoring population balance through natural enemy introductions. Biological Control 21, 199205.CrossRefGoogle Scholar
Bonato, O., Lurette, A., Vidal, C. & Fargues, J. (2007) Modelling temperature-dependent bionomics of Bemisia tabaci (Q-biotype). Physiological Entomology 32, 5055.Google Scholar
Bonizzoni, M., Guglielmino, C.R., Smallridge, C.J., Gomulski, M., Malacrida, A.R. & Gasperi, G. (2004) On the origins of medfly invasion and expansion in Australia. Molecular Ecology 13, 38453855.CrossRefGoogle ScholarPubMed
Brookfield, J.F.Y. (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology 5, 453455.Google Scholar
Cognato, A.I., Sun, J.H., Anducho-Reyes, M.A. & Owen, R.D. (2005) Genetic variation and origin of red turpentine beetle (Dendroctonus valens LeConte) introduced to the People's Republic of China. Agricultural and Forest Entomology 7, 8794.Google Scholar
Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.Google Scholar
De Leon, J.H., Neumann, G., Follett, P.A. & Hollingsworth, R.G. (2010) Molecular markers discriminate closely related species Encarsia diaspidicola and Encarsia berlesei (Hymenoptera: Aphelinidae): biocontrol candidate agents for white peach scale in Hawaii. Journal of Economic Entomology 103, 908916.Google Scholar
Dlugosch, K.M. & Parker, M. (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology 17, 431449.Google Scholar
Dubey, A.K. & Ko, C.C. (2012) Sexual dimorphism among species of Aleurocanthus Quaintance and Baker (Hemiptera: Aleyrodidae) in Taiwan, with one new species and an identification key. Zootaxa 3177, 123.Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 26112620.Google Scholar
Facon, B., Genton, B.J., Shykoff, J., Jarne, P., Estoup, A. & David, P. (2006) A general eco-evolutionary framework for understanding bioinvasions. Trends in Ecology and Evolution 21, 130135.Google Scholar
Flanders, S.E. (1969) Herbert D. Smith's observations on citrus blackfly parasites in India and Mexico and correlated circumstances. Canadian Entomologist 101, 467480.Google Scholar
Follet, P.A. & Duan, J.J. (2000) Nontarget Effects of Biological Control. Kluwer Academic, New York.Google Scholar
Frankham, R. (2005) Invasion biology – Resolving the genetic paradox in invasive species. Heredity 94, 385385.CrossRefGoogle ScholarPubMed
Grapputo, A., Boman, S., Lindstrom, L., Lyytinen, A. & Mappes, J. (2005) The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Molecular Ecology 14, 42074219.Google Scholar
Goka, K., Okabe, K., Yoneda, M. & Niwa, S. (2001) Bumblebee commercialization will cause worldwide migration of parasitizing mites. Molecular Ecology 10, 20952099.Google Scholar
Goudet, J. (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. Available online at http://www2.unil.ch/popgen/softwares/fstat.htm (accessed 18 December 2012).Google Scholar
Gowdey, C.C. (1922) Annual report of the government entomologist. Review of Applied Entomology 11, 3.Google Scholar
Guindon, S. & Gascuel, O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52, 696704.Google Scholar
Guirao, P., Beitia, F. & Cenis, J.L. (1997) Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research 87, 587593.Google Scholar
Guillemaud, T., Pasteur, N. & Rousset, F. (1997) Contrasting levels of variability between cytoplasmic genomes and incompatibility types in the mosquito Culex pipiens. Proceedings of the Royal Society of London B 264, 245251.Google Scholar
Han, B. & Cui, L. (2003) Natural population life table of citrus spiny whitefly (Aleurocanthus spiniferus) in tea plantation. Acta Ecologica Sinica 23, 17811790.Google Scholar
Heraty, J.M., Woolley, J.B., Hopper, K.R., Hawks, D.L., Kim, J.W. & Buffington, M. (2007 a) Molecular phylogenetics and reproductive incompatibility in a complex of cryptic species of aphid parasitoids. Molecular Phylogenetics and Evolution 45, 480493.Google Scholar
Heraty, J.M., Woolley, J.B. & Polaszek, A.P. (2007 b) Catalog of the Encarsia of the World. Riverside, University of California. Available online at http://cache.ucr.edu/~heraty/Encarsia.cat.pdf (accessed 25 November 2015).Google Scholar
Hopper, K.R., Roush, R.T. & Powell, W. (1993) Management of genetics of biological control introductions. Annual Review of Entomology 38, 2751.Google Scholar
Horowitz, A.R., Kontsedalov, S., Khasdan, V. & Ishaaya, I. (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology 58, 216225.CrossRefGoogle ScholarPubMed
Hoy, M.A., Jeyaprakash, A., Morakote, R., Lo, P.K.C. & Nguyen, R. (2000) Genomic analyses of two populations of Ageniaspis citricola (Hymenoptera: Encyrtidae) suggest that a cryptic species may exist. Biological Control 17, 110.Google Scholar
Hsiao, S. & Shiau, J. (2004) Monitoring of major tea pests and diseases in eastern part of Taiwan. Taiwan Tea Research Bulletin 23, 91106.Google Scholar
Kambhampati, S. & Rai, K.S. (1991) Mitochondrial DNA variation within and among populations of the mosquito Aedes albopictus. Genome 34, 288292.Google Scholar
Kankare, M., van Nouhuys, S. & Hanski, I. (2005) Genetic divergence among host-specific cryptic species in Cotesia melitaearum aggregate (Hymenoptera: Braconidae), parasitoids of checkerspot butterflies. Annals of the Entomological Society of America 98, 382394.Google Scholar
Kanmiya, K., Ueda, S., Kasai, A., Yamashita, K., Sato, Y. & Yoshiyasu, Y. (2011) Proposal of new specific status for tea-infesting populations of the nominal citrus spiny whitefly Aleurocanthus spiniferus (Homoptera: Aleyrodidae). Zootaxa 2797, 2544.Google Scholar
Kasai, A., Yamashita, K. & Yoshiyasu, Y. (2010) Tea-infesting population of the citrus spiny whitefly, Aleurocanthus spiniferus (Homoptera: Aleyrodidae), does not accept citrus leaves as host plants. Japanese Journal of Applied Entomology and Zoology 54, 140143.Google Scholar
Kirk, H., Dorn, S. & Mazzi, D. (2013) Molecular genetics and genomics generate new insights into invertebrate pest invasions. Evolutionary Applications 6, 842856.Google Scholar
Kishida, A., Kasai, A. & Yoshiyasu, Y. (2010) Oviposition and host-feeding behaviors of Encarsia smithi on a tea-infesting population of the citrus spiny whitefly Aleurocanthus spiniferus. Japanese Journal of Applied Entomology and Zoology 54, 189–143.Google Scholar
Kuwana, I. (1934) Notes on a newly imported parasite of the spiny white fly attacking citrus in Japan. pp. 3521–3525 in Proceedings of the fifth Pacific Science Congress organized by the Pacific Science Association and the National Research Council of Canada, Victoria and Vancouver, 1–14 June 1933, Toronto, University of Toronto.Google Scholar
Malacrida, A.R., Marinoni, F., Torti, C., Gomulski, L.M., Sebastiani, F., Bonvicini, C., Gasperi, G. & Guglielmino, C.R. (1998) Genetic aspects of the worldwide colonization process of Ceratitis capitata. Journal of Heredity 89, 501507.Google Scholar
Marutani, M. & Muniappan, R. (1991) Biological control of the orange spiny whitefly, Aleurocanthus spiniferus (Homoptera: Aleyrodidae) on Chuuk and Yap in Micronesia. Journal of Biological Control 5, 6469.Google Scholar
Muniappan, R., Marutani, M. & Esguerra, N. (1992) Establishment of Encarsia smithi (Silvestri) (Hymenoptera: Aphelinidae) on Pohnpei for control of the orange spiny whitefly, Aleurocanthus spiniferus (Quaintance) (Homoptera: Aleyrodidae). Proceedings of the Hawaiian Entomological Society 31, 243.Google Scholar
Muniappan, R., Purea, M., Sengebau, F. & Reddy, G.P. (2006) Orange spiny whitefly, Aleurocanthus spiniferus (Quaintance) (Homoptera: Aleyrodidae), and its parasitoids in the Republic of Palau. Proceedings of the Hawaiian Entomological Society 38, 2125.Google Scholar
Nafus, D. (1988) Establishment of Encarsia smithi on Kosrae for control of the orange spiny whitefly Aleurocanthus spiniferus. Proceedings of the Hawaiian Entomological Society 28, 229231.Google Scholar
Nakao, H.K. & Funasaki, G.Y. (1979) Introductions for biological control in Hawaii: 1975 and 1976. Proceedings of the Hawaiian Entomological Society 23, 125128.Google Scholar
Nauen, R., Stumpf, N. & Elbert, A. (2002) Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science 58, 868875.Google Scholar
Nei, M. & Tajima, F. (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97, 145163.Google Scholar
Nguyen, R. & Sailer, R.I. (1987) Facultative hyperparasitism and sex determination of Encarsia smithi (Silvestri) (Hymenoptera, Aphelinidae). Annals of the Entomological Society of America 80, 713719.Google Scholar
Ohgushi, R. (1969) Ecology of Citrus Pests. p. 244, Tokyo, Rural Culture Association.Google Scholar
Palumbo, J.C., Horowitz, A.R. & Prabhaker, N. (2001) Insecticidal control and resistance management for Bemisia tabaci. Crop Protection 20, 739765.Google Scholar
Peakall, R. & Smouse, P.E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295.Google Scholar
Peterson, G.D. (1955) Biological control of the orange spiny whitefly in Guam. Journal of Economic Entomology 48, 681683.Google Scholar
Peterson, G.D. (1957) Recent additions to the list of insects which attack crops and other important plants in Guam. Proceedings of the Hawaiian Entomological Society 16, 203207.Google Scholar
Phillips, C.B., Baird, D.B., Iline, I.I., McNeill, M.R., Proffitt, J.R., Goldson, S.L. & Kean, J.M. (2008) East meets west: adaptive evolution of an insect introduced for biological control. Journal of Applied Ecology 45, 948956.Google Scholar
Pimentel, D., McNairm, S., Janecka, J., Wightman, J., Simmonds, C., O'Connell, C., Wong, E., Russel, L., Zern, J., Aquino, T. & Tsomondo, T. (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agriculture Ecosystems and Environment 84, 120.Google Scholar
Porcelli, F. (2008) First record of Aleurocanthus spiniferus (Homoptera: Aleyrodidae) in Apulia, Southern Italy. EPPO Bulletin 38, 516518.Google Scholar
Pritchard, J.K., Stephens, M. & Donnelli, P. (2000) Inference of population structure from multilocus genotype data. Genetics 155, 945959.Google Scholar
Rajaei Shoorcheh, H., Kazemi, B., Manzari, S., Brown, J. & Sarafrazi, A. (2008) Genetic variation and mtCOI phylogeny for Bemisia tabaci (Hemiptera, Aleyrodidae) indicate that the ‘B’ biotype predominates in Iran. Journal of Pest Science 81, 199206.Google Scholar
Roderick, G.K. & Navajas, M. (2003) Genes in new environments: genetics and evolution in biological control. Nature Reviews 4, 890899.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.CrossRefGoogle ScholarPubMed
Schmidt, S., De Barro, P. & Jamieson, L. (2011) Parasitoids of the Australian citrus whitefly, Orchamoplatus citri (Takahashi) (Hemiptera, Aleyrodidae), with description of a new Eretmocerus species (Hymenoptera, Aphelinidae). Zootaxa 2873, 2734.Google Scholar
Schauff, M.E., Evans, G.A. & Heraty, J.M. (1996) A pictorial guide to the species of Encarsia (Hymenoptera: Aphelinidae) parasitic on whiteflies (Homoptera: Aleyrodidae) in North America. Proceedings of the Entomological Society of Washington 98, 135.Google Scholar
Selkoe, K.A. & Toonen, R.J. (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters 9, 615629.Google Scholar
Simmonds, E.I. (1963) Genetics and biological control. Canadian Entomologist 95, 561567.Google Scholar
Simon, C., Frati, F., Crespi, B., Liu, H. & Flook, P.K. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Annals of the Entomological Society of America 87, 651701.Google Scholar
Simon-Bouhet, B., Garcia-Meunier, P. & Viard, F. (2006) Multiple introductions promote range expansion of the mollusc Cyclope neritea (Nassariidae) in France: evidence from mitochondrial sequence data. Molecular Ecology 15, 16991711.Google Scholar
Slatkin, M. (1985) Gene flow in natural populations. Annual Review of Ecology and Systematics 16, 6371.Google Scholar
Smouse, P.E. & Peakall, R. (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82, 561573.CrossRefGoogle ScholarPubMed
Starý, P. (1981) On the strategy, tactics and trends of host specificity evolution in aphid parasitoids (Hymenoptera, Aphidiidae). Acta Entomologica Bohemoslovaca 78, 6575.Google Scholar
Stireman, J.O. III, Nason, J.D., Heard, S.B. & Seehawer, J.M. (2006) Cascading host-associated genetic differentiation in parasitoids of phytophagous insects. Proceedings of the Royal Society of London B 273, 523530.Google Scholar
Takagi, K. (1974) Monitoring of parasitoid wasps in tea plantations. Tea Research Journal 10, 91131.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA 6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Thompson, J.D., Higgins, D.G. & Gibsion, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.Google Scholar
Torchin, M.E., Lafferty, K.D., Dobson, A.P., McKenzie, V.J. & Kuris, A.M. (2003) Introduced species and their missing parasites. Nature 421, 628630.Google Scholar
Tsagkarakou, A., Tsigenopoulos, C.S., Gorman, K., Lagnel, J. & Bedford, I.D. (2007) Biotype status and genetic polymorphism of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in Greece: mitochondrial DNA and microsatellites. Bulletin of Entomological Research 97, 2940.Google Scholar
Uesugi, R. & Sato, Y. (2011) Differentiation of the tea-infesting population of citrus spiny whitefly Aleurocanthus spiniferus (Homoptera: Aleyrodidae) from the citrus-infesting population in Japan on the basis of differences in the mitochondrial cytochrome c oxidase subunit I gene. Japanese Journal of Applied Entomology and Zoology 55, 155161.Google Scholar
Uesugi, R. & Sato, Y. (2013) Isolation and characterization of nine microsatellite loci for a parasitoid wasp, Encarsia smithi (Silvestri) (Hymenoptera: Aphelinidae). International Journal of Molecular Sciences 14, 527531.Google Scholar
van den Berg, M.A. & Greenland, J. (1997) Classical biological control of Aleurocanthus spiniferus (Hem.: Aleyrodidae), on citrus in southern Africa. Entomophaga 42, 459465.Google Scholar
van den Berg, M.A., Höppner, G. & Greenland, J. (2000) An economic study of the biological control of the spiny blackfly, Aleurocanthus spiniferus (Hemiptera: Aleyrodidae), in a citrus orchard in Swaziland. Biocontrol Science and Technology 10, 2732.Google Scholar
van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. & Shipley, P. (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535538.Google Scholar
Verhoeven, K.J.F., Macel, M., Wolfe, L.M. & Biere, A. (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proceedings of the Royal Society of London B 278, 28.Google ScholarPubMed
Xie, Z.L. (1995) Investigation of the structure sequence of insect populations in the tea plantations of Guangdong province (China). Review of Agricultural Entomology 83, 7883.Google Scholar
Xuefen, C., Jiaode, S., Guangyuan, W., Jianzhong, J. & Migsen, Z. (1997) Integrated management technology of citrus black spiny whitefly (Aleurocanthus spiniferus Quaintance). Journal of Tea Science 17, 1520.Google Scholar
Yamashita, K. & Hayashida, Y. (2006) Occurrence and control of the citrus spiny whitefly, Aleurocanthus spiniferus (Quaintance), on tea tree in Kyoto Prefecture. Plant Protection 60, 378380.Google Scholar
Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 28692876.Google Scholar