Published online by Cambridge University Press: 10 July 2009
A non-technical description is given of a new, powerful, low cost field system (Infra-red Active Determination of Insect Flight Trajectories or IRADIT) for detailed and automatic remote sensing studies of natural insect flight behaviour. The special requirements and difficulties of the detection problem are defined. A series of examples of field devices and techniques are presented to illustrate the key factors of the optical sensing and tracking of insects in flight. In the finally adopted IRADIT system, flying insects are differentially illuminated, under all natural light conditions, by an intense beam of pulsed near-infra-red radiation and detected using a shuttered image intensifier linked with a video camera operating at a rate of 50 frames per second. Immediate fully-automatic determination of the flight trajectories of several simultaneously detected insects was achieved, at this same high rate and in the presence of sky background photon noise, by processing the video signals with electronic circuits and a microcomputer. Flight trajectories are influenced by the local wind, whose vector must be subtracted to study insect flight behaviour. This was achieved by the use of a specially developed sensitive three-vector vane anemometer, providing digital data to the microcomputer at a minimum rate of 5 Hz. In tests of the prototype IRADIT-anemometer system in the field, insects with wing area of only 1·5 mm2 and flying against the midday sky were readily tracked at ranges up to 15 m. A range of at least 100 m is expected for nocturnal moth tracking.