Hostname: page-component-6bf8c574d5-r8w4l Total loading time: 0 Render date: 2025-03-09T02:35:50.847Z Has data issue: false hasContentIssue false

Behavioural responses of four generalist pests to crops and exotic weeds for their sustainable management

Published online by Cambridge University Press:  06 March 2025

Nayan Roy*
Affiliation:
Ecology Research Unit, Department of Zoology, M. U. C. Women’s College, Burdwan, India

Abstract

Leaf epicuticular waxes play a crucial role in host selection of Spilosoma obliqua, Amsacta albistriga, Spodoptera litura, and Spilarctia luteum. The leaf epicuticular waxes of groundnut, soybean, mikania, and parthenium indicated the presence of 25 different n-alkanes (C14 to n-C36) and 15 free fatty acids (FFAs) (C12:0 to C22:0). All the chemical analysis and bioassays were conducted by using the standard protocols. The attraction index (AI %) and oviposition preference index (OPI %) of each pest species towards the combined-synthetic-mixtures of respective leaf wax chemicals (4 n-alkanes [n-C16, n-C18, n-C20, n-C22] + 4 FFAs [C14:0, C16:1, C16:0, C20:0]) were more preferred due to respective wax chemicals. The AI (%) and OPI (%) towards the said mixture (C3) of the selected host plants (groundnut > soybean > parthenium > mikania) were in the order of S. obliqua > S. litura > S. luteum > A. albistriga for better survival and growth of their neonates because of the respective amounts of leaf wax chemicals including other phytoconstituents. The said synthetic mixture in respective leaf equivalent amount (µg leaf−1) acted as the most preferred lure to develop baited trap and or groundnut as trap crop for soybean to support integrated pest management of such crops (groundnut and soybean). It also supports the use of such pest species as biocontrol agent for the exotic weeds (mikania and parthenium). This finding promotes sustainable pest and weed management for climate smart agriculture to maintain and sustain quality of our planet in the near future.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, DK, Billore, SD, Sharma, AN, Dupare, BU and Srivastava, SK (2013) Soybean: Introduction, improvement, and utilization in India—Problems and prospects. Agricultural Research 2, 293300. doi:10.1007/s40003-013-0088-0.CrossRefGoogle Scholar
Arora, NK and Mishra, I (2023) Sustainable development goal 13: Recent progress and challenges to climate action. Environmental Sustainability 6, 297301. doi:10.1007/s42398-023-00287-4.CrossRefGoogle Scholar
Barragán-Fonseca, KY, Barragán-Fonseca, KB, Verschoor, G, van Loon, JJA, and Dicke, M (2020) Insects for peace, Current Opinion in Insect Science 40, 8593. https://doi.org/10.1016/j.cois.2020.05.011.CrossRefGoogle ScholarPubMed
Clewley, GD, Eschen, R, Shaw, RH and Wright, DJ (2012) The effectiveness of classical biological control of invasive plants. Journal of Applied Ecology 49, 12871295. doi:10.1111/j.1365-2664.2012.02209.x.CrossRefGoogle Scholar
Das, S, Koner, A and Barik, A (2019) A beetle biocontrol agent of rice field weeds recognize its host plants by surface wax long-chain alkanes and free fatty acids. Chemoecology 29, 155170. doi:10.1007/s00049-019-00285-1.CrossRefGoogle Scholar
Debnath, R, Mitra, P, Das, S and Barik, A (2021) Leaf surface wax chemicals in Trichosanthes anguina (Cucurbitaceae) cultivars mediating short-range attraction and oviposition in Diaphania indica. Journal of Chemical Ecology 47, 664679. doi:10.1007/s10886-021-01291-w.CrossRefGoogle ScholarPubMed
Feng, B, Qian, K and Du, YJ (2017) Floral volatiles from Vigna unguiculata are olfactory and gustatory stimulants for oviposition by the bean pod borer moth Maruca vitrata. Insects 8, 116. doi:10.3390/insects8020060.CrossRefGoogle ScholarPubMed
Foster, SP and Howard, AJ (1998) Influence of stimuli from Camellia japonica on ovipositional behavior of generalist herbivore Epiphyas postvittana. Journal of Chemical Ecology 24, 12511275. doi:10.1023/A:1022455120922.CrossRefGoogle Scholar
Fowler, SV, Syrett, P and Hill, R (2000) Success and safety in the biological control of environmental weeds in New Zealand. Australian Journal of Ecology 25, 553562. doi:10.1046/j.1442-9993.2000.01075.x.CrossRefGoogle Scholar
Gripenberg, S, Mayhew, PJ, Parnell, M and Roslin, T (2010) A meta-analysis of preference–performance relationships in phytophagous insects. Ecology Letters 13, 383393. doi:10.1111/j.1461-0248.2009.01433.x.CrossRefGoogle ScholarPubMed
Hill, MP and Coetzee, J (2017) The biological control of aquatic weeds in South Africa: Current status and future challenges. Bothalia 47, 2152. doi:10.4102/abc.v47i2.2152.CrossRefGoogle Scholar
Jandt, JM, McCall, E and Toth, AL (2024) Native Polistes wasps (Hymenoptera: Vespidae) hold potential as biocontrol agents for lepidopteran pests of Brassica. Journal of Economic Entomology 10, 17. doi:10.1093/jee/toae146.Google Scholar
Jayanth, KP and Visalakshy, PNG (1996) Succession of vegetation after suppression of parthenium weed by Zygogramma bicolorata in Bangalore, India. Biological Agriculture and Horticulture 12, 303309. doi:10.1080/01448765.1996.9754753.CrossRefGoogle Scholar
Jetter, R, Schaffer, S and Riederer, M (2000) Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: Evidence from Prunus laurocerasus L. Plant Cell and Environment 23, 619628. doi:https://doi.org/10.1046/j.1365-3040.2000.00581.x.CrossRefGoogle Scholar
Koner, A, Das, S, Mobarak, SH and Barik, A (2022) Short-range attraction and oviposition stimulant of a biocontrol agent, Galerucella placida Baly (Coleoptera: Chrysomelidae) toward weed leaf surface waxes. Bulletin of Entomological Research 112, 204218. doi:10.1017/S0007485321000730.CrossRefGoogle ScholarPubMed
Koschier, EH, Kogel, WJD and Visser, JH (2000) Assessing the attractiveness of volatile plant compounds to western flower thrips Frankliniella occidentalis. Journal of Chemical Ecology 26, 26432655. doi:10.1023/A:1026470122171.CrossRefGoogle Scholar
Kumar, S and Ray, P (2007) Biology of Spodoptera litura Fabricius (Lepidoptera: Noctuidae) on some of its major weed hosts. Entomon 32, 287290.Google Scholar
Kumar, S and Ray, P (2018) Host plant preference of army worm (Spodoptera litura) on crops and weeds. Indian Journal of Weed Science 50, 100102. doi:10.5958/0974-8164.2018.00025.4.CrossRefGoogle Scholar
Kumbhakar, S, Das, S and Barik, A (2023) Epicuticular wax chemicals of Lablab purpureus subsp. bengalensis influence short-range attraction and oviposition responses in Aphis craccivora and Aphis gossypii. Bulletin of Entomological Research 113, 794807. doi:10.1017/S0007485323000445.CrossRefGoogle ScholarPubMed
Li, G and Ishikawa, Y (2006) Leaf epicuticular wax chemicals of the Japanese knotweed Fallopia japonica as oviposition stimulants for Ostrinia latipennis. Journal of Chemical Ecology 32, 595604. doi:10.1007/s10886-005-9022-7.CrossRefGoogle ScholarPubMed
Lucas-Barbosa, D, Sun, P, Hakman, A, Van Beek, TA, Van Loon, JJA and Dicke, M (2016) Visual and odour cues: Plant responses to pollination and herbivory affect the behaviour of flower visitors. Functional Ecology 30, 431441. doi:10.1111/1365-2435.12509.Google Scholar
Malik, U, Mitra, S and Barik, A (2017) Attraction of the biocontrol agent, Galerucella placida Baly (Coleoptera: Chrysomelidae) to the leaf surface alkanes of the weed, Polygonum orientale L. Allelopathy Journal 40, 103116. doi:10.26651/2017-40-1-1070.CrossRefGoogle Scholar
McFadyen, REC (1998) Biological control of weeds. Annual Review of Entomology 43, 369393. doi:10.1146/annurev.ento.43.1.369.CrossRefGoogle ScholarPubMed
Mobarak, SH, Koner, A and Barik, A (2022) Flower surface wax chemicals in green gram help to stimulate oviposition in Spilosoma obliqua within short distances. Entomologia Experimentalis Et Applicata 170, 222234. doi:10.1111/eea.13136.CrossRefGoogle Scholar
Mobarak, SH, Koner, A, Mitra, S, Mitra, P and Barik, A (2020) The importance of leaf surface wax as short-range attractant and oviposition stimulant in a generalist Lepidoptera. Journal of Applied Entomology 144, 616631. doi:10.1111/jen.12769.CrossRefGoogle Scholar
Parr, MJ, Tran, BMD, Simmonds, MSJ, Kite, GC and Credland, PF (1998) Influence of some fatty acids on oviposition by the bruchid beetle, Callosobruchus maculatus. Journal of Chemical Ecology 24, 15771593. doi:10.1023/A:1020894410107.CrossRefGoogle Scholar
Poudel, M, Adhikari, P and Thapa, K (2019) Biology and control methods of the alien invasive weed Mikania micrantha: A review. Environmental Reviews 2, 0612. doi:10.26480/ecr.01.2019.06.12.Google Scholar
Rebora, M, Salerno, G, Piersanti, S, Gorb, E and Gorb, S (2020) Role of fruit epicuticular waxes in preventing Bactrocera oleae (Diptera: Tephritidae) attachment in different cultivars of Olea europaea. Insects 11, 189. doi:10.3390/insects11030189.CrossRefGoogle ScholarPubMed
Roy, N (2019) Jute leaf physicochemical cues mediated behavioral responses of Diacrisia casignetum Kollar. Agricultural Research 8, 287296. doi:10.1007/s40003-018-0362-2.CrossRefGoogle Scholar
Roy, N (2021) Synergism in host selection behaviour of three generalists towards leaf cuticular wax of sesame cultivars. Neotropical Entomology 50, 812827. doi:10.1007/s13744-021-00892-0.CrossRefGoogle ScholarPubMed
Roy, N (2022) Behavioral pattern of generalist and specialist insect pests to Brassicaceous leaf cuticular n-alkanes and free fatty acids. Arthropod-Plant Interactions 16, 537551. doi:10.1007/s11829-022-09917-w.Google Scholar
Roy, N, Laskar, S and Barik, A (2012) The attractiveness of odorous esterified fatty acids to the potential biocontrol agent, Altica cyanea. Journal of Asia-Pacific Entomology 15, 277282. doi:10.1016/j.aspen.2012.03.001.CrossRefGoogle Scholar
Schwarzländer, M, Hinz, HL, Winston, RL and Day, MD (2018) Biological control of weeds: An analysis of introductions, rates of establishment and estimates of success, worldwide. BioControl 63, 319331. doi:10.1007/s10526-018-9890-8.CrossRefGoogle Scholar
Singh, R, Koul, O, Rup, PJ and Jindal, J (2011) Oviposition and feeding behavior of the maize borer, Chilo partellus, in response to eight essential oil allelochemicals. Entomologia Experimentalis Et Applicata 138, 5564. doi:10.1111/j.1570-7458.2010.01071.x.CrossRefGoogle Scholar
Soni, DK, Mishra, PK and Pandey, P (2024) Potential health risks assessment associated with arsenic-contaminated groundwater in the eastern district of Uttar Pradesh, India: A case study. Environmental Sustainability 7, 6175. doi:10.1007/s42398-024-00303-1.CrossRefGoogle Scholar
Srivastava, K, Sharma, D, Anal, AKD and Sharma, S (2018) Integrated management of Spodoptera litura: A review. International Journal of Life Sciences and Scientific Research 4, 15361538. doi:10.21276/ijlssr.2018.4.1.4.CrossRefGoogle Scholar
Subbiah, G and Velmurugan, K (2020) Eco-friendly pest and disease management practices in groundnut. Journal of Biological Control 34, 9093. doi:10.18311/jbc/2020/25316.CrossRefGoogle Scholar
Turlings, TCJ, Davison, AC and Tamò, C (2004) A six-arm olfactometer permitting simultaneous observation of insect attraction and odour trapping. Physiological Entomology 29, 4555. doi:10.1111/j.1365-3032.2004.0362.x.CrossRefGoogle Scholar
Udayagiri, S and Mason, CE (1997) Epicuticular wax chemicals in Zea mays influence oviposition in Ostrinia nubilalis. Journal of Chemical Ecology 23, 16751687. doi:10.1023/B:JOEC.0000006443.72203.f7.CrossRefGoogle Scholar
Wang, Y, Wang, J, Chai, G, Li, C, Hu, Y, Chen, X and Wang, Z (2015) Developmental changes in composition and morphology of cuticular waxes on leaves and spikes of glossy and glaucous wheat (Triticum aestivum L.). PLoS One 10, e0141239. doi:10.1371/journal.pone.0141239.CrossRefGoogle ScholarPubMed
Zar, JH (1999) Biostatistical Analysis. Upper Saddle River, New Jersey, USA: Prentice Hall, 663.Google Scholar
Supplementary material: File

Roy supplementary material 1

Roy supplementary material
Download Roy supplementary material 1(File)
File 21 KB
Supplementary material: File

Roy supplementary material 2

Roy supplementary material
Download Roy supplementary material 2(File)
File 28.9 KB
Supplementary material: File

Roy supplementary material 3

Roy supplementary material
Download Roy supplementary material 3(File)
File 23.1 KB
Supplementary material: File

Roy supplementary material 4

Roy supplementary material
Download Roy supplementary material 4(File)
File 22.9 KB