Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T02:56:35.601Z Has data issue: false hasContentIssue false

Biological characteristics of Anticarsia gemmatalis (Lepidoptera: Noctuidae) for three consecutive generations under different temperatures: understanding the possible impact of global warming on a soybean pest

Published online by Cambridge University Press:  24 November 2011

D.M. da Silva*
Affiliation:
Department of Zoology, Federal University of Paraná, UFPR, Curitiba, State of Paraná, 81531-980, Brazil
C.B. Hoffmann-Campo
Affiliation:
Embrapa Soybean, PO Box 231, Londrina, Paraná, 86001-970, Brazil
A. de Freitas Bueno
Affiliation:
Embrapa Soybean, PO Box 231, Londrina, Paraná, 86001-970, Brazil
R.C.O. de Freitas Bueno
Affiliation:
University of Rio Verde, FESURV, Fontes do Saber Farm, PO Box 104, Rio Verde, Goiás, 75901-970, Brazil
M.C.N. de Oliveira
Affiliation:
Embrapa Soybean, PO Box 231, Londrina, Paraná, 86001-970, Brazil
F. Moscardi
Affiliation:
Agrarian Sciences Center, State University of Londrina, UEL, Londrina, Paraná, 86051-990, Brazil
*
*Author for correspondence: Fax: (043) 3371-6100 E-mail: debora_mell@hotmail.com

Abstract

Climate changes can affect the distribution and intensity of insect infestations through direct effects on their life cycles. Experiments were carried out during three consecutive generations to evaluate the effect of different temperatures (25°C, 28°C, 31°C, 34°C and 37±1°C) on biological traits of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Noctuidae). The insects were fed on artificial diet and reared in environmental chambers set at 14 h photophase. The developmental cycle slowed with the increase in the temperature, within the 25°C to 34°C range. Male and female longevities were reduced with an increase in temperature from 25°C to 28°C. Egg viability was highest at 25°C, and the sex ratio was not influenced by temperature, in the three generations. There was no interactive effect between development time and temperature on pupal weight. The results suggested that the increase in the temperature negatively impacted A. gemmatalis development inside the studied temperature range, indicating a possible future reduction of its occurrence on soybean crops, as a consequence of global warming, mainly considering its impact on tropical countries where this plant is cropped. A. gemmatalis was not able to adapt to higher temperatures in a three-generation interval for the studied temperature range. However, a gradual increase and a longer adaptation period may favor insect selection and consequently adaptation, and must be considered in future studies in this area. Moreover, it is important to consider that global warming might turn cold areas more suitable to A. gemmatalis outbreaks. Therefore, more than a future reduction of A. gemmatalis occurrence due to global warming, we might expect changes regarding its area of occurrence on a global perspective.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afonso, A.P.S., Wrege, M., Martins, J.F.S. & Nava, D.E. (2009) Simulação do zoneamento ecológico da lagarta-do-cartucho no Rio Grande do Sul com o aumento de temperatura. Arquivos do Instituto Biológico 76, 607612.CrossRefGoogle Scholar
Bavaresco, A., Garcia, M.S., Grützmacher, A.D., Foresti, J. & Ringenberg, R. (2002) Biologia e exigências térmicas de Spodoptera cosmioides (Walk.) (Lepidoptera: Noctuidae). Neotropical Entomology 31, 4954.CrossRefGoogle Scholar
Bortoli, A.S., Takao, M.A., Silva, N.R. & Brito, H.C. (2005) Aspectos nutricionais de Ceraeochrysa cincta Schneider, 1851 (Neuroptera: Chrysopidae) em diferentes presas. Revista de Agricultura 80, 111.Google Scholar
Bowler, K. & Terblanche, J.S. (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biological Review 83, 339355.CrossRefGoogle ScholarPubMed
Busato, G.R., Grützmacher, A.D., Garcia, M.S., Giolo, F.P., Zotti, M.J. & Stefanello Júnior, G.J. (2005) Biologia comparada de populações de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) em folhas de milho e arroz. Neotropical Entomology 34, 743750.CrossRefGoogle Scholar
Crocomo, W.B. & Parra, J.R.P. (1985) Desenvolvimento de Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) sobre milho, trigo e sorgo. Revista Brasileira de Entomologia 29, 363368.Google Scholar
Estay, A.S., Lima, M. & Labra, F.A. (2009) Predicting insect pest status under climate change scenarios: combining experimental data and population dynamics modelling. Journal of Applied Entomology 133, 491499.CrossRefGoogle Scholar
Fugi, C.G.Q., Lourenção, A.L. & Parra, J.R.P. (2005) Biology of Anticarsia gemmatalis on soybean genotypes with different degrees of resistance to insects. Scientia Agricola 62, 3135.CrossRefGoogle Scholar
Greene, G.L., Reid, J.C., Blount, V.N. & Riddle, T.C. (1973) Mating and oviposition of the velvetbean caterpillar in soybeans. Environmental Entomology 2, 11131115.CrossRefGoogle Scholar
Greene, G.L., Leppla, N.C. & Dickerson, W.A. (1976) Velvetbean caterpillar: a rearing procedure and artificial medium. Journal of Economic Entomology 69, 487488.CrossRefGoogle Scholar
Hochachka, P.W. & Sommero, G.N. (1984) Temperature adaptation. pp. 355449in Hochachka, P.W. & Sommero, G.N. (Eds) Biochemical Adaptation. Princeton, NJ, USA, Princeton University Press.CrossRefGoogle Scholar
Hoffmann-Campo, C.B., Oliveira, E.B. & Moscardi, F. (1985) Criação Massal da Lagarta da Soja. Londrina, Brazil, Embrapa.Google Scholar
Magrini, E.A., Silveira Neto, S., Parra, J.R.P. & Botelho, P.S.M. (1996) Biologia e exigências térmicas de Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) em laboratório. Anais da Sociedade Entomológica Brasileira 25, 513519.CrossRefGoogle Scholar
Milano, P., Berti-Filho, E., Parra, J.R.P. & Cônsoli, F.L. (2008) Influência da temperatura na freqüência de cópula de Anticarsia gemmatalis Hübner e Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotropical Entomology 37, 528535.CrossRefGoogle Scholar
Moscardi, F., Barfield, C.S. & Allen, G.E. (1981) Effects of temperature on adult velvetbean caterpillar oviposition, egg hatch and longevity. Annals of Entomological Society of America 74, 167171.CrossRefGoogle Scholar
Nava, D.E., Haddad, M.L., & Parra, J.R.P. (2005) Exigências térmicas, estimativa do número de gerações de Stenoma catenifer e comprovação do modelo em campo. Pesquisa Agropecuária Brasileira 40, 961967.CrossRefGoogle Scholar
Nylin, S. & Gotthard, K. (1998) Plasticity in life-story traits. Annual Review of Entomology 43, 6383.CrossRefGoogle Scholar
Pereira, M.J.B. & Berti-Filho, E. (2009) Exigências térmicas e estimativa do número de gerações da broca-do-fruto Annona (Cerconota anonella). Ciência Rural 39, 22782284.CrossRefGoogle Scholar
Piubelli, G.C., Hoffmann-Campo, C.B., Moscardi, F., Miyakubo, S.H. & Oliveira, M.C.N. (2005) Are chemical compounds important for soybean resistance to Anticarsia gemmatalis? Journal of Chemical Ecology 31, 15091525.CrossRefGoogle ScholarPubMed
Raubenheimer, D. & Simpson, S.J. (1992) Analysis of covariance: an alternative to nutritional indices. Entomologia Experimentalis et Applicata 62, 221231.CrossRefGoogle Scholar
, V.G.M., Fonseca, B.V.C., Boregas, K.G.B. & Waquil, J.M. (2009) Sobrevivência e Desenvolvimento Larval de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) em Hospedeiros Alternativos. Neotropical Entomology 38, 108115.CrossRefGoogle Scholar
Santos, K.B., Meneguim, A.M. & Neves, P.M.O.J. (2005) Biologia de Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) em diferentes hospedeiros. Neotropical Entomology 34, 903910.CrossRefGoogle Scholar
SAS Institute (2001) SAS user's guide: statistics, version 8e. Cary, NC, USA, SAS Institute.Google Scholar
Scriber, J.M. (1996) A new ‘Cold Pocket’ hypothesis to explain local host preference shifts in Papilio canadensis. Entomologia Experimentalis et Applicata 80, 315319.CrossRefGoogle Scholar
Slansky, F. (1993) Nutritional ecology: the fundamental quest for nutrients. pp. 2991in Stamp, N.E. & Casey, T.M. (Eds) Caterpillars. New York, USA, Chapman & Hall.Google ScholarPubMed
Specht, A., Formentini, A.C. & Corseuil, E. (2006) Biologia de Automeris illustris (Walker) (Lepidoptera, Saturniidade, Hemileucinae). Revista Brasileira de Zoologia 23, 537546.CrossRefGoogle Scholar