Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T10:57:59.190Z Has data issue: false hasContentIssue false

Climate as a possible driver of gall morphology in the chestnut pest Dryocosmus kuriphilus across Spanish invaded areas

Published online by Cambridge University Press:  27 August 2020

Diego Gil-Tapetado*
Affiliation:
Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, Madrid28006, Spain
Francisco José Cabrero-Sañudo
Affiliation:
Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, José Antonio Novais 2, Madrid28040, Spain
Carlo Polidori
Affiliation:
Departamento de Ciencias Ambientales, Universidad de Castilla La Mancha. Avda. Carlos III s/n., Toledo45071, Spain
Jose F. Gómez
Affiliation:
Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, José Antonio Novais 2, Madrid28040, Spain
José Luis Nieves-Aldrey
Affiliation:
Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, Madrid28006, Spain
*
Author for correspondence: Diego Gil-Tapetado, Email: diego.gil@ucm.es

Abstract

The alien cynipid wasp Dryocosmus kuriphilus Yasumatsu, 1951 is a serious pest of chestnuts (Castanea spp.) in Japan, North America and Europe, causing fruit losses while inducing galls in buds. While D. kuriphilus galls have a recognizable and roughly invariable globular shape, their size varies, reaching up to 4 cm in diameter. Among other factors, such variation may depend on different climatic conditions in different attacked areas. Here, we sampled and measured 375 D. kuriphilus galls from 25 localities throughout the Iberian Peninsula, including both cold and rainy northern (Eurosiberian) areas and warm and dry central-southern (Mediterranean) areas, to test the effects of climate and geographical location on gall morphology. The analyses indicate that gall mass and volume follow a pattern that can be associated with a climatic cline. In particular, the Eurosiberian galls were smaller than the Mediterranean galls according to differences in climatic conditions. In the southern areas, the greater insolation regime does not allow the chestnut trees to be distributed at lower altitudes, but the high rainfall and humidity regime of the mountain enclaves allow their presence. These conditions of insolation and precipitation seem to influence the morphological characteristics of the galls of D. kuriphilus.

Type
Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, WG and Weis, AE (1997) Evolutionary Ecology Across Three Trophic Levels: Goldenrods, Gallmakers and Natural Enemies Monographs in Population Biology (29). Princeton, New Jersey: Princeton University Press.Google Scholar
Aebi, A, Schonrogge, K, Melika, G, Alma, A, Bosio, G, Quacchia, A, Picciau, L, Abe, Y, Moriya, S, Yara, K, Seljak, G and Stone, GN (2006) Parasitoid recruitment to the globally invasive chestnut gall wasp Dryocosmus kuriphilus. In Ozaki, K, Yukwa, J, Ohgushi, T, Price, PW (eds), Galling Arthropods and their Associates, Ecology and Evolution. Tokyo: Springer-Verlag, pp. 103121.CrossRefGoogle Scholar
Aebi, A, Schönrogge, K, Melika, G, Quacchia, A, Alma, A and Stone, GN (2007) Native and introduced parasitoids attacking the invasive chestnut gall wasp Dryocosmus kuriphilus. EPPO Bulletin 37, 166171.CrossRefGoogle Scholar
AEMET (State Meteorological Agency) (2014) Atlas climático ibérico. Temperatura del aire y precipitación (1971–2000) (Iberian climate atlas. Air temperature and precipitation (1971–2000)). Ministerio de Medio Ambiente y Medio Rural y Marino and Instituto de Meteorologia de Portugal. Madrid, España. 79 pp.Google Scholar
AEMET (State Meteorological Agency) (2017) Summary of weather of January 2017. Available at http://www.aemet.es/documentos/es/serviciosclimaticos/vigilancia_clima/resumenes_climat/ccaa/galicia/avance_climat_gal_ene_2017.pdf (accessed 20 November 2019).Google Scholar
Askew, RR, Melika, G, Pujade-Villar, J, Schonrogge, K, Stone, GN and Nieves-Aldrey, JL (2013) Catalogue of parasitoids and inquilines in cynipid oak galls in the West Palaearctic. Zootaxa 3643, 1133.CrossRefGoogle ScholarPubMed
Avtzis, DN, Melika, G, Matošević, D and Coyle, DR (2019) The Asian chestnut gall wasp Dryocosmus kuriphilus: a global invader and a successful case of classical biological control. Journal of Pest Science 92, 107115.CrossRefGoogle Scholar
Battisti, A, Benvegnu, I, Colombari, F and Haack, RA (2014) Invasion by the chestnut gall wasp in Italy causes significant yield loss in Castanea sativa nut production. Agricultural and Forest Entomology 16, 7579.CrossRefGoogle Scholar
Brussino, G, Bosio, G, Baudino, M, Giordano, R, Ramello, F and Melika, G (2002) Pericoloso insetto esotico per il castagno europeo. Informatore agrario 37, 5961.Google Scholar
Bernardo, U, Iodice, L, Sasso, R, Tutore, VA, Cascone, P and Guerrieri, E (2013) Biology and monitoring of Dryocosmus Kuriphilus on Castanea sativa in Southern Italy. Agricultural and Forestry Entomology 15, 6576.CrossRefGoogle Scholar
Bonsignore, CP and Bernardo, U (2018) Effects of environmental parameters on the chestnut gall wasp and its complex of indigenous parasitoids. Science of Nature 105, 20.CrossRefGoogle ScholarPubMed
Bonsignore, CP, Vono, G and Bernardo, U (2019) Environmental thermal levels affect the phenological relationships between the chestnut gall wasp and its parasitoids. Physiological Entomology 44, 8798.CrossRefGoogle Scholar
Brase, CH and Brase, CP (2018) Understanding Basic Statistics. Cengage Learning. USA.Google Scholar
CABI (Centre for Agriculture and Biosciences International) (2015) Invasive Species Compendium CABI Datasheets Dryocosmus kuriphilus. Available at http://wwwcabiorg/isc/datasheet/20005 (accessed 20 November 2019).Google Scholar
Colombari, F and Battisti, A (2016) Native and introduced parasitoids in the biocontrol of Dryocosmus kuriphilus in Veneto (Italy). EPPO Bulletin 46, 275285.CrossRefGoogle Scholar
Cooper, WR and Rieske, LK (2006) Insects associated with the Asian chestnut gall wasp. Nutshell 16, 2830.Google Scholar
Cooper, WR and Rieske, LK (2007) Community associates of an exotic gallmaker, Dryocosmus kuriphilus (Hymenoptera: Cynipidae), in Eastern North America. Annals of Entomological Society of America 100, 236244.CrossRefGoogle Scholar
Cooper, WR and Rieske, LK (2009) Woody stem galls interact with foliage to affect community associations. Environmental Entomology 38, 417424.CrossRefGoogle ScholarPubMed
Cooper, WR and Rieske, LK (2010) Gall structure affects ecological associations of Dryocosmus kuriphilus (Hymenoptera: Cynipidae). Environmental Entomology 39, 787797.CrossRefGoogle Scholar
Dukes, JS and Mooney, HA (1999) Does global change increase the success of biological invaders? Trends in Ecology & Evolution 14, 135139.CrossRefGoogle ScholarPubMed
EFSA (2010) Risk assessment of the oriental chestnut gall wasp, Dryocosmus kuriphilus for the EU territory on request from the European Commission. EFSA Journal 8, 1619.Google Scholar
Egan, SP, Hood, GR, DeVela, G and Ott, JR (2013) Parallel patterns of morphological and behavioral variation among host-associated populations of Two Gall Wasp Species. PLoS One 8, e54690.CrossRefGoogle ScholarPubMed
EPPO (European Plant Protection Organization) (2005) Dryocosmus kuriphilus. EPPO Bulletin 35, 422424.CrossRefGoogle Scholar
EPPO (European Plant Protection Organization) (2012) First report of Dryocosmus kuriphilus in the Czech Republic EPPO Reporting Service, 07-2012. Available at https://gd.eppo.int/reporting/article-1968 (accessed 20 November 2019).Google Scholar
EPPO (European Plant Protection Organization) (2014) First report of Dryocosmus kuriphilus in Portugal EPPO Reporting Service, 06-2014. Available at https://gd.eppo.int/reporting/article-2823 (accessed 20 November 2019).Google Scholar
ESRI (Environmental Systems Research Institute) (2010) ArcGis 10.0 Geographical Information System. Available at http://www.esri.es/es/.Google Scholar
EUFORGEN (European Forest Genetic Resources Programme) (2009) Distribution map of Chestnut (Castanea sativa). Available at www.euforgen.org (accessed 20 November 2019).Google Scholar
European Commission (2005) Natura 2000 in the Alpine Region. Office for Official Publications of the European Commission. Belgium, 12p.Google Scholar
European Commission (2009 a) Natura 2000 in the Atlantic Region. Office for Official Publications of the European Commission. Belgium, 12p.Google Scholar
European Commission (2009 b) Natura 2000 in the Mediterranean Region. Office for Official Publications of the European Commission. Belgium, 12p.Google Scholar
European Commision (2011) Natura 2000 Biogeographical Regions. European Commision. Available at http://ec.europa.eu/environment/nature/natura2000/biogeog_regions/ (accessed 31 July 2020).Google Scholar
Everitt, B (1998) The Cambridge Dictionary of Statistics. Cambridge, UK, New York: Cambridge University Press.Google Scholar
Ferracini, C, Ferrari, E, Pontini, M, Nova, LKH, Saladini, MA and Alma, A (2017) Post-release evaluation of non-target effects of Torymus sinensis, the biological control agent of Dryocosmus kuriphilus in Italy. BioControl 62, 445456.CrossRefGoogle Scholar
Ferracini, C, Bertolino, S, Bernardo, U, Bonsignore, CP, Faccoli, M, Ferrari, E and Rocco, A (2018) Do Torymus sinensis (Hymenoptera: Torymidae) and agroforestry system affect native parasitoids associated with the Asian chestnut gall wasp? Biological Control 121, 3643.CrossRefGoogle Scholar
Gehring, E, Bellosi, B, Quacchia, A and Conedera, M (2018) Assessing the impact of Dryocosmus kuriphilus on the chestnut tree: branch architecture matters. Journal of Pest Sciences 91, 189202.CrossRefGoogle Scholar
Gehring, E, Bellosi, B, Reynaud, N and Conedera, M (2020) Chestnut tree damage evolution due to Dryocosmus kuriphilus attacks. Journal of Pest Sciences 93, 103115.CrossRefGoogle Scholar
Gil-Tapetado, D, Gómez, JF, Cabrero-Sañudo, FJ and Nieves-Aldrey, JL (2018) Distribution and dispersal of the invasive Asian chestnut gall wasp, Dryocosmus kuriphilus (Hymenoptera: Cynipidae), across the heterogeneous landscape of the Iberian Peninsula. European Journal of Entomology 115, 575586.CrossRefGoogle Scholar
Hawkins, BA and Unruh, TR (1988) Protein and water levels in A. atriplicis (Diptera: Cecidomyiidae) galls. The Southwestern Naturalist 33, 114117.CrossRefGoogle Scholar
Jara-Chiquito, LJ, Heras, J and Pujade-Villar, J (2016) Primeros datos de reclutamiento de himenópteros parasitoides autóctonos para Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae) en Cataluña (Península Ibérica). Boletín de la SEA 59, 219226.Google Scholar
Jiménez-Valverde, A, Peterson, AT, Soberón, J, Overton, JM, Aragón, P and Lobo, JM (2011) Use of niche models in invasive species risk assessments. Biological invasions 13, 27852797.CrossRefGoogle Scholar
Jones, D (1983) The influence of host density and gall shape on the survivorship of Diastrophus kincaidii gill (Hymenoptera, Cynipidae). Canadian Journal of Zoology 61, 21382142.CrossRefGoogle Scholar
Kos, K, Kriston, E and Melika, G (2015) Invasive chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae), its native parasitoid community and association with oak gall wasps in Slovenia. European Journal of Entomology 112, 698704.CrossRefGoogle Scholar
Kottek, M, Grieser, J, Beck, C, Rudolf, B and Rubel, F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15, 259263.CrossRefGoogle Scholar
Lauteri, M, Scartazza, A, Guido, MC and Brugnoli, E (1997) Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Functional Ecology 11, 675683.CrossRefGoogle Scholar
Legendre, P and Legendre, L (1998) Numerical Ecology, 2nd English Edn. Developments in Environmental Modelling, Amsterdam, Elsevier Science, 20.Google Scholar
Marchosky, JR and Craig, PT (2004) Gall size-dependent survival for Asphondylia atriplicis (Diptera: Cecidomyiidae) on Atriplex canescens. Environmental Entomology 33, 709719.CrossRefGoogle Scholar
Matošević, D, Lacković, N, Melika, G, Kos, K, Franić, I, Kriston, E, Bozso, M, Seljak, G and Rot, M (2016) Biological control of invasive Dryocosmus kuriphilus with introduced parasitoid Torymus sinensis in Croatia, Slovenia and Hungary. Periodicum Biologorum 117, 471477.CrossRefGoogle Scholar
Matošević, D and Melika, G (2013) Recruitment of native parasitoids to a new invasive host: first results of Dryocosmus kuriphilus parasitoid assemblage in Croatia. Bulletin of Insectology 66, 231238.Google Scholar
Moriya, S, Shiga, S and Adachi, I (2003) Classical biological control of the chestnut gall wasp in Japan. In: Proceedings of the 1st international symposium on biological control of arthropods, Honolulu, Hawaii, 14–18 January 2002. United States Department of Agriculture, Forest Service, Washington, pp. 407415.Google Scholar
Nieves-Aldrey, JL (2001) Hymenoptera: Cynipidae (Vol. 16). Editorial. Madrid, Spain: CSIC-CSIC Press.Google Scholar
Nieves-Aldrey, JL, Gil-Tapetado, D, Gavira, ON, Boyero, JR, Polidori, C, Blanco, D, Rey del Castillo, C, Rodríguez-Rojo, MP, Wong, ME, Vela, JM and Lombardero, MJ (2019) Torymus sinensis Kamijo, a biocontrol agent for the invasive chestnut gall wasps Dryocosmus kuriphilus Yasumatsu in Spain: its natural dispersal from France and the first data on establishment after experimental releases. Forest Systems 28, 3.CrossRefGoogle Scholar
Nugnes, F, Gualtieri, L, Bonsignore, CP, Parillo, R, Annarumma, R, Griffo, R and Bernardo, U (2018) Resistance of a local ecotype of Castanea sativa to Dryocosmus kuriphilus (Hymenoptera: Cynipidae) in Southern Italy. Forests 9, 94.CrossRefGoogle Scholar
Ôtake, A (1980) Chestnut gall wasp, Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae): a preliminary study on trend of adult emergence and some other ecological aspects related to the final stage of its life cycle. Applied Entomology and Zoology 15, 96105.CrossRefGoogle Scholar
Panzavolta, T, Bracalini, M, Croci, F, Campani, C, Bartoletti, T, Miniati, G, Benedettelli, S and Tiberi, R (2012) Asian chestnut gall wasp in Tuscany: gall characteristics, egg distribution and chestnut cultivar susceptibility. Agricultural and Forestry Entomology 14, 139145.CrossRefGoogle Scholar
Panzavolta, T, Bernardo, U, Bracalini, M, Cascone, P, Croci, F, Gebiola, M, Iodice, L, Tiberi, R and Guerrieri, E (2013) Native parasitoids associated with Dryocosmus kuriphilus in Tuscany. Italy. Bulletin of Insectology 66, 195201.Google Scholar
Panzavolta, T, Croci, F, Bracalini, M, Melika, G, Benedettelli, S, Tellini, GF and Tiberi, R (2018) Population dynamics of native parasitoids associated with the Asian Chestnut Gall Wasp (Dryocosmus kuriphilus) in Italy. Psyche 2018, 8078049.Google Scholar
Paparella, F, Ferracini, C, Portaluri, A, Manzo, A and Alma, A (2016) Biological control of the chestnut gall wasp with T. sinensis: a mathematical model. Ecological Modelling 338, 1736.CrossRefGoogle Scholar
Pérez-Otero, R, Crespo, D and Vázquez, JPM (2017) Dryocosmus kuriphilus Yasumatsu, 1951 (Hymenoptera: Cynipidae) in Galicia (NW Spain): pest dispersion, associated parasitoids and first biological control attempts. Arquivos Entomolóxicos 17, 439448.Google Scholar
Payne, JA, Menke, AS and Schroeder, PM (1975) Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae), an oriental chestnut gall wasp in North America. USDA Cooperative Economic Insect Report, 25, 903–905.Google Scholar
Price, PW, Waring, GL and Fernandes, GW (1986) Hypotheses on the adaptive nature of galls. Proceedings of the Entomological Society of Washington 88, 361363.Google Scholar
Price, PW, Fernandes, GW and Waring, WG (1987) Adaptive nature of insect galls. Environmental Entomology 16, 1524.CrossRefGoogle Scholar
Pujade-Villar, J, Torrell, A and Rojo, M (2013) Primeres troballes a la península Ibèrica de Dryocosmus kuriphilus (Hym., Cynipidae), una espècie de cinípid d'origen asiàtic altament perillosa per al castanyer (Fagaceae). Orsis 27, 295301 [in Catalan].Google Scholar
Quacchia, A, Moriya, S, Bosio, G, Scapin, I and Alma, A (2008) Rearing, release and settlement prospect in Italy of Torymus sinensis, the biological control agent of the chestnut gall wasp Dryocosmus kuriphilus. BioControl 53, 829839.CrossRefGoogle Scholar
Quacchia, A, Ferracini, C, Nicholls, JA, Piazza, E, Saladini, MA, Tota, F, Melika, G and Alma, A (2012) Chalcid parasitoid community associated with the invading pest Dryocosmus kuriphilus in north-western Italy. Insect Conservation and Diversity 6, 114123.CrossRefGoogle Scholar
Quacchia, A, Moriya, S, Askew, RR and Schönrogge, K (2013) Torymus sinensis: biology, host range and hybridization. In II European Congress on Chestnut 1043, pp. 105–111.Google Scholar
Quicke, DLJ (1997) Parasitic Wasps. London, Chapman & Hall Ltd.Google Scholar
Reale, L, Tedeschini, E, Rondoni, G, Ricci, C, Bin, F, Frenguelli, G and Ferranti, F (2016) Histological investigation on gall development induced by a worldwide invasive pest, Dryocosmus kuriphilus, on Castanea sativa. Plant Biosystems 150, 3542.CrossRefGoogle Scholar
RStudio Team (2018) RStudio: Integrated Development for R RStudio, Inc. Boston, US: RStudio Team. Available at http://www.rstudio.com/.Google Scholar
StatSoft (2010) Statistica 10.0 Portable version. Available at www.statsoft.com.Google Scholar
Stone, GN and Schönrogge, K (2003) The adaptive significance of insect gall morphology. Trends in Ecology and Evolution 18, 512522.CrossRefGoogle Scholar
Stone, GN, Schönrogge, K, Atkinson, RJ, Bellido, D and Pujade-Villar, J (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annual Review of Entomology 47, 633668.CrossRefGoogle Scholar
Tscharntke, T (1994) Tritrophic interactions in gall maker communities on Phragmites australis: testing ecological hypotheses. In Price, PW, Mattson, WJ & Baranchikov, YN (eds.), The Ecology and Evolution of Gall-Forming Insects. St. Paul, MN: Forest Service, U.S. Department of Agriculture, pp. 7392.Google Scholar
Vet, LEM and Dicke, M (1992) Ecology of infochemica use by natural enemies in a tritrophic context. Annual Review of Entomology 37, 141172.CrossRefGoogle Scholar
Vinson, SB (1985) The behaviour of parasitoids. In Kerkut, GA and Gilbert, LI (eds), Comprehensive Insect Physiology, Biochemistry and Physiology. New York: Pergamon Press, pp. 417469.Google Scholar
Vinson, SB (1988) Comparison of host characteristics that elicit host recognition behaviour of parasitic hymenoptera. In Gupta, VK (ed.), Advances in Parasitic Hymenoptera Research. Leinden: E.J. Brill, pp. 285291.Google Scholar
Wang, GG, Bauerle, WL and Mudder, BT (2006) Effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut (Castanea dentata) seedlings. Forest Ecology and Management 226, 173180.CrossRefGoogle Scholar
Weseloh, RM (1981) Host location by parasitoids. In Norlund, DA, Jones, RL & Lewis, WJ (eds), Semiochemicals: Their Role in Pest Control. New York: John Wiley, pp. 7996.Google Scholar
Yasumatsu, K (1951) A new Dryocosmus Injurious to chestnut trees in Japan (Hym., Cynipidae). Mushi 22, 8993.Google Scholar
Zerebecki, RA and Sorte, CJ (2011) Temperature tolerance and stress proteins as mechanisms of invasive species success. PLoS One 6, e14806.CrossRefGoogle ScholarPubMed
Zhang, ZY, Tarcali, G, Radocz, L, Feng, YQ and Shen, YY (2009) Chestnut gall wasp, Dryocosmus kuriphilus Yasumatsu in China and in Hungary. Journal of Agricultural Sciences 38, 123128.Google Scholar
Supplementary material: File

Gil-Tapetado et al. supplementary material

Gil-Tapetado et al. supplementary material 1

Download Gil-Tapetado et al. supplementary material(File)
File 29.9 KB
Supplementary material: File

Gil-Tapetado et al. supplementary material

Gil-Tapetado et al. supplementary material 2

Download Gil-Tapetado et al. supplementary material(File)
File 57 KB