Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T01:59:28.740Z Has data issue: false hasContentIssue false

Development of specific ITS markers for plant DNA identification within herbivorous insects

Published online by Cambridge University Press:  24 November 2010

L. Pumariño
Affiliation:
IRTA, Entomology, Carretera de Cabrils, Km 2, E-08348 Cabrils, Barcelona, Spain
O. Alomar
Affiliation:
IRTA, Entomology, Carretera de Cabrils, Km 2, E-08348 Cabrils, Barcelona, Spain
N. Agustí*
Affiliation:
IRTA, Entomology, Carretera de Cabrils, Km 2, E-08348 Cabrils, Barcelona, Spain
*
*Authors for correspondence Fax: (34) 93 7533954 E-mail: nuria.agusti@irta.cat

Abstract

DNA-based techniques have proved to be very useful methods to study trophic relationships between pests and their natural enemies. However, most predators are best defined as omnivores, and the identification of plant-specific DNA should also allow the identification of the plant species the predators have been feeding on. In this study, a PCR approach based on the development of specific primers was developed as a self-marking technique to detect plant DNA within the gut of one heteropteran omnivorous predator (Macrolophus pygmaeus) and two lepidopteran pest species (Helicoverpa armigera and Tuta absoluta). Specific tomato primers were designed from the ITS 1–2 region, which allowed the amplification of a tomato DNA fragment of 332 bp within the three insect species tested in all cases (100% of detection at t=0) and did not detect DNA of other plants nor of the starved insects. Plant DNA half-lives at 25°C ranged from 5.8 h, to 27.7 h and 28.7 h within M. pygmaeus, H. armigera and T. absoluta, respectively. Tomato DNA detection within field-collected M. pygmaeus suggests dietary mixing in this omnivorous predator and showed a higher detection of tomato DNA in females and nymphs than males. This study provides a useful tool to detect and to identify plant food sources of arthropods and to evaluate crop colonization from surrounding vegetation in conservation biological control programs.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agustí, N. & Gabarra, R. (2009a) Puesta a punto de una cría masiva del depredador polífago Dicyphus tamaninii Wagner (Heteroptera: Miridae). Boletin Sanidad Vegetal: Plagas 35, 205218.Google Scholar
Agustí, N. & Gabarra, R. (2009b) Effect of adult age and insect density of Dicyphus tamaninii Wagner (Heteroptera: Miridae) on progeny. Journal of Pest Science 82(3), 241246.CrossRefGoogle Scholar
Agustí, N., De Vicente, M.C. & Gabarra, R. (1999) Development of sequence amplified characterized region (SCAR) markers of Helicoverpa armigera: a new polymerase chain reaction-based technique for predator gut analysis. Molecular Ecology 8, 14671474.CrossRefGoogle ScholarPubMed
Agustí, N., de Vicente, C. & Gabarra, R. (2000) Developing SCAR markers to study predation on Trialeurodes vaporariorum. Insect Molecular Biology 9, 263268.CrossRefGoogle ScholarPubMed
Agustí, N., Shayler, S.P., Harwood, J.D., Vaughan, I.P., Sunderland, K.D. & Symondson, W.O.C. (2003a) Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers. Molecular Ecology 12, 34673475.CrossRefGoogle ScholarPubMed
Agustí, N., Unruh, T.R. & Welter, S.C. (2003b) Detecting Cacopsylla pyricola (Hemiptera: Psyllidae) in predator guts using COI mitochondrial markers. Bulletin of Entomological Research 93, 179185.CrossRefGoogle ScholarPubMed
Agustí, N., Bourguet, D., Spataro, T., Delos, M., Eychenne, N., Folcher, L. & Arditi, R. (2005) Detection, identification and geographical distribution of European corn borer larval parasitoids using molecular markers. Molecular Ecology 14, 32673274.CrossRefGoogle ScholarPubMed
Albajes, R. & Alomar, O. (2004) Facultative predators. pp. 818822 in Capinera, J.L. (Ed) Encyclopedia of Entomology, vol. 2. Dordrecht, The Netherlands, Kluwer Academic Publishers.CrossRefGoogle Scholar
Albajes, R., Castañé, C., Gabarra, R. & Alomar, O. (2006) Risks of plant damage caused by natural enemies introduced for arthropod biological control. pp. 132144 in Bigler, F., Babendreier, D. & Kuhlmann, U. (Eds) Environmental Impact of Invertebrates for Biological Control of Arthropods: Methods and Risk Assessment. Wallingford, UK, CAB International.Google Scholar
Alomar, O., Goula, M. & Albajes, R. (2002) Colonisation of tomato fields by predatory mirid bugs (Hemiptera: Heteroptera) in northern Spain. Agriculture Ecosystems and Environment 89, 105115.CrossRefGoogle Scholar
Castañé, C., Alomar, O., Goula, M. & Gabarra, R. (2004) Colonization of tomato greenhouses by the predatory mired bugs Macrolophus caliginosus and Dicyphus tamaninii. Biological Control 30, 591597.CrossRefGoogle Scholar
Chase, M.W., Salamin, N., Wilkinson, M., Dunwell, J.M., Kesanakurth, R.P., Haidar, N. & Savolainen, V. (2005) Land plants and DNA barcodes: short-term and long-term goals. Philosophical Transactions of the Royal Society, Series B 360, 18891895.CrossRefGoogle ScholarPubMed
Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X., Luo, K., Li, Y., Li, X., Jia, X., Lin, Y. & Leon, C. (2010) Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE 5(1): e8613.CrossRefGoogle ScholarPubMed
Gabarra, R., Alomar, O., Castañé, C., Goula, M. & Albajes, R. (2004) Movement of greenhouse whitefly and its predators between in and outside of Mediterranean greenhouses. Agriculture Ecosystems and Environment 102, 341348.CrossRefGoogle Scholar
Gariepy, T.D., Kuhlmann, U., Gillott, C. & Erlandson, M. (2007) Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of Arthropods. Journal of Applied Entomology 131(4), 225240.CrossRefGoogle Scholar
Gillespie, D.R. & McGregor, R.R. (2000) The functions of plant feeding in the omnivorous predator Dicyphus hesperus: water places limits on predation. Ecological Entomology 25(4), 380386.CrossRefGoogle Scholar
Goubault, M. & Hardy, I.C.W. (2007) Deuterium marking of chemical emissions: detectability and fitness consequences of a novel technique for insect behavioural studies. Entomologia Experimentalis et Applicata 125, 285296.CrossRefGoogle Scholar
Greenstone, M.H., Rowley, D.R., Weber, D.C. & Hawthorne, D.J. (2007) Feeding mode and prey detectability half-lives in molecular gut-content analysis: An example with two predators of the Colorado potato beetle. Bulletin of Entomological Research 97, 201209.CrossRefGoogle ScholarPubMed
Gurr, G.M., Wratten, S.D. & Altieri, M.A. (2004) (Eds) Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods. Ithaca, NY, Cornell University Press.CrossRefGoogle Scholar
Harwood, J.D., Desneux, N., Yoo, H.J.S., Rowley, D.L., Greenstone, M.H., Obrycki, J.J. & O'Neil, R.J. (2007) Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: a molecular approach. Molecular Ecology 16, 43904400.CrossRefGoogle ScholarPubMed
Hollingsworth, M., Clark, A., Forrest, L., Richardson, J., Pennington, T., Long, D., Cowan, R., Chase, M., Gaudeul, M. & Hollingsworth, P. (2009) Selecting barcoding loci for plants: evaluation of seven candidate loci with species level sampling in three divergent groups of land plants. Molecular Ecology Resources 9, 439457.CrossRefGoogle ScholarPubMed
Hoogendoorn, M. & Heimpel, G.E. (2001) PCR-based gut content analysis of insect predators: using ribosomal ITS-1fragments from prey to estimate predation frequency. Molecular Ecology 10, 20592067.CrossRefGoogle ScholarPubMed
Hosseini, R., Schmidt, O. & Keller, M.A. (2008) Factors affecting detectability of prey DNA in the gut contents of invertebrate predators: a polymerase chain reaction-based method. Entomologia Experimentalis et Applicata 126(3), 194202.CrossRefGoogle Scholar
Innis, M.A. & Gelfand, D.H. (1990) Optimization of PCRs. pp. 312 in Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds) PCR protocols. San Diego, CA, Academic Press.Google Scholar
Jones, V.P., Hagler, J.R., Brunner, J.F., Baker, C.C. & Wilburn, T.D. (2006) An inexpensive immunomarking technique for studying movement patterns of naturally occurring insect populations. Environmental Entomology 35(4), 827836.CrossRefGoogle Scholar
Juen, A. & Traugott, M. (2007) Revealing species-specific trophic links in soil food webs: molecular identification of scarab predators. Molecular Ecology 16(7), 15451557.CrossRefGoogle ScholarPubMed
Jurado-Rivera, J.A., Vogler, A.P., Reid, C.A.M., Petitpierre, E. & Gómez-Zurita, J. (2009) DNA barcoding insect-host plant associations. Proceedings of the Royal Society, Series B 276, 639648.Google ScholarPubMed
King, R.A., Read, D.S., Traugott, M. & Symondson, W.O.C. (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Molecular Ecology 17, 947963.CrossRefGoogle ScholarPubMed
Kress, W.J., Wurdack, K.J., Zimmer, E.A., Weigt, L.A. & Janzen, D.H. (2005) Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America 102, 83698374.CrossRefGoogle ScholarPubMed
Landis, D.A., Wratten, S.D. & Gurr, G.M. (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology 45, 175201.CrossRefGoogle ScholarPubMed
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948.CrossRefGoogle ScholarPubMed
Lavandero, B.I., Wratten, S.D., Hagler, J. & Tylianakis, J. (2004) Marking and tracking techniques for insect predators and parasitoids in ecological engineering. pp. 117131 in Gurr, G.M., Wratten, S.D. & Altieri, M.A. (Eds) Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods. Ithaca, NY, Cornell University Press.Google Scholar
Lövei, G.L., Sopp, P.I. & Sunderland, K.D. (1990) Digestion rate in relation to alternative feeding in three species of polyphagous predators. Ecological Entomology 15, 293300.CrossRefGoogle Scholar
Lundgren, J.G. & Weber, D.C. (2010) Changes in digestive rate of a predatory beetle over its larval stage: Implications for dietary breadth. Journal of Insect Physiology 56, 431437.CrossRefGoogle ScholarPubMed
Martinez-Cascales, J.I., Cenis, J.L., Cassis, G. & Sanchez, J.A. (2006) Species identity of Macrolophus melanotoma (Costa 1853) and Macrolophus pygmaeus (Rambur 1839) (Insecta: Heteroptera: Miridae) based on morphological and molecular data and bionomic implications. Insect Systematics and Evolution 37, 385404.Google Scholar
Matheson, C.D., Muller, G.C., Junnila, A., Vernon, K., Hausmann, A., Miller, M.A., Greenblatt, C. & Schlein, Y. (2007) A PCR method for detection of plant meals from the guts of insects. Organisms, Diversity and Evolution 7, 294303.CrossRefGoogle Scholar
Miller, M.A., Muller, G.C., Kravchenko, V.D., Junnila, A., Vernon, K.K., Matheson, C.D. & Hausmann, A. (2006) DNA-based identification of Lepidoptera larvae and plant meals from their gut contents. Russian Entomological Journal 15, 427432.Google Scholar
Moreno-Ripoll, R., Gabarra, R. & Agustí, N. (2009) Tracking predation of Macrolophus pygmaeus and Nesidiocoris tenuis (Heteroptera: Miridae) in tomato protected crops by molecular methods. IOBC/WPRS Bulletin 49, 307312.Google Scholar
Saiki, R.K. (1990) Amplification of genomic DNA. pp. 1320 in Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds) PCR Protocols. San Diego, CA, Academic Press.Google Scholar
Sass, C., Little, D.P., Stevenson, D.W. & Specht, C.D. (2007) DNA Barcoding in the Cycadales: Testing the Potential of Proposed Barcoding Markers for Species Identification of Cycads. PLoS ONE 2(11), e1154.CrossRefGoogle ScholarPubMed
Scarratt, S.L., Wratten, S.D. & Shishehbor, P. (2008) Measuring parasitoid movement from floral resources in a vineyard. Biological Control 46, 107113.CrossRefGoogle Scholar
Silberbauer, L., Yee, M., Del Socorro, A., Wratten, S., Gregg, P. & Bowie, M. (2004) Pollen grains as markers to track the movements of generalist predatory insects in agroecosystems. International Journal of Pest Management 50, 165171.CrossRefGoogle Scholar
Sinia, A., Roitberg, B., McGregor, R.R. & Gillespie, D.R. (2004) Prey feeding increases water stress in the omnivorous predator Dicyphus hesperus. Entomologia Experimentalis et Applicata 110(3), 243248.CrossRefGoogle Scholar
Stephens, A.E.A., Barrington, A.M., Bush, V.A., Fletcher, N.M., Mitchell, V.J. & Suckling, D.M. (2008) Evaluation of dyes for marking painted apple moths (Teia anartoides Walker, Lep. Lymantriidae) used in a sterile insect release program. Australian Journal of Entomology 47, 131136.Google Scholar
Valentini, A., Pompanon, F. & Taberlet, P. (2009a) DNA barcoding for ecologists. Trends in Ecology and Evolution 24(2), 110117.CrossRefGoogle ScholarPubMed
Valentini, A., Miquel, C., Nawaz, M.A., Bellemain, E., Coissac, E., Pompanon, F., Gielly, L., Cruaud, C., Nascetti, G., Wincker, P., Swenson, J.E. & Taberlet, P. (2009b) New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Molecular Ecology Resources 9(1), 5160.CrossRefGoogle ScholarPubMed
Wäckers, F.L., van Rijn, P.C.J. & Bruin, J. (2005) Plant-Provided Food for Carnivorous Insects: A Protective Mutualism and its Applications. Cambridge, UK, Cambridge University Press.Google Scholar
Wanner, H., Gu, H., Günther, D., Hein, S. & Dorn, S. (2006) Tracing spatial distribution of parasitism in fields with flowering plant strips using stable isotope marking. Biological Control 39, 240247.Google Scholar
Weber, D.C. & Lundgren, J.G. (2009) Detection of predation using qPCR: Effect of prey quantity, elapsed time, chaser diet, and sample preservation on detectable quantity of prey DNA. Journal of Insect Science 9, 41.Google Scholar