Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T10:10:32.342Z Has data issue: false hasContentIssue false

The diagnostic utility of sequence-based assays for the molecular delimitation of the epidemiologically relevant Culex pipiens pipiens taxa (Diptera: Culicidae)

Published online by Cambridge University Press:  10 April 2019

L. Francuski
Affiliation:
Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
N. Gojković
Affiliation:
Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
B. Krtinić
Affiliation:
Ciklonizacija, Primorska 76, 21000 Novi Sad, Serbia
V. Milankov*
Affiliation:
Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
*
*Author for correspondence Phone: +381 21 4852671 Fax: +381 21 450620 E-mail: vesna.milankov@dbe.uns.ac.rs

Abstract

The northern house mosquito (Culex pipiens pipiens L.) is a vector of several important pathogens and comprises two epidemiologically distinct ecotypes (molestus Forskål and pipiens). The delimitation of its ecotypes is a crucial, yet controversial step in vector surveillance due to varying diagnostic values of different characters. Therefore, we reviewed the success of a diagnostic assay based on the mitochondrial cytochrome c oxidase subunit I locus (COI) by analyzing previously published sequences of molestus and pipiens sampled in different geographical areas. Next, by genotyping individuals from Northern Serbia at this locus, we additionally assessed whether genetic structure of urban and rural Cx. p. pipiens ecotypes corresponded to the admixture pattern. Finally, to account for the different susceptibility of genetic markers to introgression, we also analyzed genetic structuring based on the ribosomal internal transcribed spacer 2 (ITS2). No latitude-dependent differentiation of Cx. p. pipiens ecotypes was found at a global level, with the COI assay further failing to accurately identify molestus and pipiens ecotypes. Likewise, both individual- (BAPS) and population-based (analysis of molecular variance and FST estimates) methods showed no significant urban/rural genetic differentiation in Serbia, indicating unhindered gene flow between different Cx. p. pipiens habitat types. The findings challenge the previous instances of Cx. p. pipiens ecotype identification, while also spotlighting the vectorial capacity of their hybrid offspring.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Equal contribution.

Current address: Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.

References

Bahnck, C.M. & Fonseca, D.M. (2006) Rapid assay to identify the two genetic forms of Culex (culex) pipiens L. (Diptera: Culicidae) and hybrid populations. The American Journal of Tropical Medicine and Hygiene 75, 251255.Google Scholar
Batovska, J., Blacket, M.J., Brown, K. & Lynch, S.E. (2016) Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Australia. Ecology and Evolution 6, 30013011.Google Scholar
Batovska, J., Cogan, N.O.I., Lynch, S.E. & Blacket, M.J. (2017) Using next-generation sequencing for DNA barcoding: capturing allelic variation in ITS2. G3: Genes, Genomes, Genetics 7, 1929.Google Scholar
Becker, N., Jöst, A. & Weitzel, T. (2012) The Culex pipiens complex in Europe. Journal of the American Mosquito Control Association 28, 5367.Google Scholar
Beebe, N.W. & Saul, A. (1995) Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. The American Journal of Tropical Medicine and Hygiene 53, 478481.Google Scholar
Božičić, B. (1985) The mosquitoes (Diptera: Culicidae) of the Fruška Gora Mountain, Monographs of Fruška Gora, pp. 1–102. Matica srpska, Novi Sad, Serbia. (in Serbian).Google Scholar
Chevillon, C., Eritja, R., Pasteur, N. & Raymond, M. (1995) Commensalism, adaptation and gene flow: mosquitoes from the Culex pipiens complex in different habitats. Genetics Research 66, 147157.Google Scholar
Chevillon, C., Rivet, Y., Raymond, M., Rousset, F., Smouse, P.E. & Pasteur, N. (1998) Migration/selection balance and ecotypic differentiation in the mosquito Culex pipiens. Molecular Ecology 7, 197208.Google Scholar
Cho, S.Y., Suh, K.I. & Bae, Y.J. (2013) DNA barcode library and its efficacy for identifying food-associated insect pests in Korea. Entomological Research 43, 253261.Google Scholar
Corander, J. & Tang, J. (2007) Bayesian analysis of population structure based on linked molecular information. Mathematical Biosciences 205, 1931.Google Scholar
Crabtree, M.B., Savage, H.M. & Miller, B.R. (1995) Development of a species-diagnostic polymerase chain reaction assay for the identification of Culex vectors of St. Louis encephalitis virus based on interspecies sequence variation in ribosomal DNA spacers. The American Journal of Tropical Medicine and Hygiene 53, 105109.Google Scholar
Danabalan, R., Ponsonby, D.J. & Linton, Y.-M. (2012) A critical assessment of available molecular identification tools for determining the status of Culex pipiens s.l. in the United Kingdom. Journal of the American Mosquito Control Association 28, 6874.Google Scholar
DeSalle, R., Egan, M.G. & Siddall, M. (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society B 360, 19051916.Google Scholar
Di Luca, M., Toma, L., Boccolini, D., Severini, F., La Rosa, G., Minelli, G., Bongiorno, G., Montarsi, F., Arnoldi, D., Capelli, G., Rizzoli, A. & Romi, R. (2016) Ecological distribution and CQ11 genetic structure of Culex pipiens complex (Diptera: Culicidae) in Italy. PLoS ONE 11, e0146476.Google Scholar
El-Kholy, S.E., El-Husseiny, I.M., Meshrif, W.S., Abou El-Azm, A. & Salem, M.L. (2017) Does the mosquito Culex pipiens represent a potential vector of hepatitis C virus? Medical and Veterinary Entomology 32, 155161.Google Scholar
Excoffier, L., Smouse, P.E. & Quattro, J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479491.Google Scholar
Excoffier, L., Laval, G. & Schneider, S. (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1, 4750.Google Scholar
Farajollahi, A., Fonseca, D.M., Kramer, L.D. & Kilpatrick, A.M. (2011) ‘Bird biting’ mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infection, Genetics and Evolution 11, 15771585.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google Scholar
Fonseca, D.M., Keyghobadi, N., Malcolm, C.A., Mehmet, C., Schaffner, F., Mogi, M., Fleischer, R.C. & Wilkerson, R.C. (2004) Emerging vectors in the Culex pipiens complex. Science 303, 15351538.Google Scholar
Gomes, B., Sousa, C.A., Novo, M.T., Freitas, F.B., Alves, R., Côrte-Real, A.R., Salgueiro, P., Donnelly, M.J., Almeida, A.P.G. & Pinto, J. (2009) Asymmetric introgression between sympatric molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in the Comporta region, Portugal. BMC Evolutionary Biology 9, 262.Google Scholar
Gomes, B., Sousa, C.A., Vicente, J.L., Pinho, L., Calderón, I., Arez, E., Almeida, A.P.G., Donnelly, M.J. & Pinto, J. (2013) Feeding patterns of molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in a region of high hybridization. Parasites & Vectors 6, 93.Google Scholar
Gomes, B., Wilding, C.S., Weetman, D., Sousa, C.A., Novo, M.T., Savage, H.M., Almeida, A.P.G., Pinto, J. & Donnelly, M.J. (2015) Limited genomic divergence between intraspecific forms of Culex pipiens under different ecological pressures. BMC Evolutionary Biology 15, 197.Google Scholar
Gunay, F., Alten, B., Simsek, F., Aldemir, A. & Linton, Y.-M. (2015) Barcoding Turkish Culex mosquitoes to facilitate arbovirus vector incrimination studies reveals hidden diversity and new potential vectors. Acta Tropica 143, 111120.Google Scholar
Gutsevich, A.V., Monchadskii, A.S. & Shtakel'berg, A.A. (1974) Fauna of the USSR Diptera. Vol. 3, No. 4. Mosquitoes family Culicidae. Keter Publishing House Jerusalem Ltd, Jerusalem.Google Scholar
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L. & de Waard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270, 313321.Google Scholar
Honnen, A.-C. & Monaghan, M.T. (2018) City-dwellers and country folks: lack of population differentiation along an urban-rural gradient in the mosquito Culex pipiens (Diptera: Culicidae). Journal of Insect Science 17, 107.Google Scholar
Kemenesi, G., Krtinić, B., Milankov, V., Kutas, A., Dallos, B., Oldal, M., Somogyi, N., Németh, V., Bányai, K. & Jakab, F. (2014) West Nile virus surveillance in mosquitoes, April to October 2013, Vojvodina province, Serbia: implications for the 2014 season. EuroSurveillance 19, 20779.Google Scholar
Kent, R.J., Harrington, L.C. & Norris, D.E. (2007) Genetic differences between Culex pipiens f. molestus and Culex pipiens pipiens (Diptera: Culicidae) in New York. Journal of Medical Entomology 44, 5059.Google Scholar
Kothera, L., Nelms, B.M., Reisen, W.K. & Savage, H.M. (2013) Population genetic and admixture analyses of Culex pipiens complex (Diptera: Culicidae) populations in California, United States. The American Journal of Tropical Medicine and Hygiene 89, 11541167.Google Scholar
Krtinić, B., Ludoški, J. & Milankov, V. (2012) Study on siphonal measurements and usefulness in delimitation of ‘rural’ and ‘urban’ ecotypes of Culex pipiens. Bulletin of Insectology 65, 2327.Google Scholar
Krtinić, B., Francuski, L. & Milankov, V. (2014) Microhabitat and spatial variation at HK isozyme loci in Culex pipiens: testing isolation by distance and isolation by ecology model. Bulletin of Insectology 67, 237246.Google Scholar
Krtinić, B., Ludoški, J. & Milankov, V. (2015) Multi-character approach reveals a discordant pattern of phenotypic variation during ontogeny in Culex pipiens biotypes (Diptera: Culicidae). Bulletin of Entomological Research 105, 129138.Google Scholar
Krtinić, B., Francuski, L., Ludoški, J. & Milankov, V. (2016) Integrative approach revealed contrasting pattern of spatial structuring within urban and rural biotypes of Culex pipiens. Journal of Applied Entomology 140, 757774.Google Scholar
Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 18701874.Google Scholar
Lunt, D.H., Zhang, D.-X., Szymura, J.M. & Hewitt, G.M. (1996) The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology 5, 153165.Google Scholar
Milankov, V., Ludoški, J., Ståhls, G., Stamenković, J. & Vujić, A. (2009) High molecular and phenotypic diversity in the Merodon avidus complex (Diptera, Syrphidae): cryptic speciation in a diverse insect taxon. Zoological Journal of the Linnean Society 155, 819833.Google Scholar
Papa, A., Xanthopoulou, K., Tsioka, A., Kalaitzopoulou, S. & Mourelatos, S. (2013) West Nile virus in mosquitoes in Greece. Parasitology Research 112, 15511555.Google Scholar
Petit, R.J. & Excoffier, L. (2009) Gene flow and species delimitation. Trends in Ecology and Evolution 24, 386393.Google Scholar
Popović, N., Milošević, B., Urošević, A., Poluga, J., Lavadinović, L., Nedeljković, J., Jevtović, Dj. & Dulović, O. (2013) Outbreak of West Nile virus infection among humans in Serbia, August to October 2012. EuroSurveillance 18, 20613.Google Scholar
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2011) ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology 21, 18641877.Google Scholar
Reusken, C.B.E.M., de Vries, A., Buijs, J., Braks, M.A.H., den Hartog, W. & Scholte, E.-J. (2010) First evidence for presence of Culex pipiens biotype molestus in the Netherlands, and of hybrid biotype pipiens and molestus in Northern Europe. Journal of Vector Ecology 35, 210212.Google Scholar
Rudolf, M., Czajka, C., Börstler, J., Melaun, C., Jöst, H., von Thien, H., Badusche, M., Becker, N., Schmidt-Chanasit, J., Krüger, A., Tannich, E. & Becker, S. (2013) First nationwide surveillance of Culex pipiens complex and Culex torrentium mosquitoes demonstrated the presence of Culex pipiens biotype pipiens/molestus hybrids in Germany. PLoS ONE 8, e71832.Google Scholar
Shaikevich, E.V. (2007) PCR-RFLP of the COI gene reliably differentiates Cx. pipiens, Cx. pipiens f. molestus and Cx. torrentium of the Pipiens Complex. Journal of the European Mosquito Control Association 23, 2530.Google Scholar
Shaikevich, E.V. (2017) Assessment of distribution patterns of Culex disease vectors by molecular assays. Journal of Analytical & Pharmaceutical Research 6, 00169.Google Scholar
Shaikevich, E.V. & Vinogradova, E.B. (2014) The discovery of a hybrid population of mosquitoes of the Culex pipiens L. complex (Diptera, Culicidae) on the Kos Island (Greece) by means of molecular markers. Entomological Review 94, 480485.Google Scholar
Shaikevich, E.V. & Zakharov, I.A. (2010) Polymorphism of mitochondrial COI and nuclear ribosomal ITS2 in the Culex pipiens complex and in Culex torrentium (Diptera: Culicidae). Comparative Cytogenetics 4, 161174.Google Scholar
Shaikevich, E.V., Vinogradova, E.B., Platonov, A.E., Karan, L.S. & Zakharov, I.A. (2005) Polymorphism of mitochondrial DNA and infection with symbiotic cytoplasmic bacterium Wolbachia pipientis in mosquitoes of the Culex pipiens (Diptera, Culicidae) complex from Russia. Russian Journal of Genetics 41, 244248.Google Scholar
Shaikevich, E.V., Zagoskin, M.V. & Mukha, D.V. (2013) Comparative characteristics of the intergenic spacer of the ribosomal RNA gene cluster in mosquitoes of the genus Culex (Diptera: Culicidae). Molecular Biology 47, 364372.Google Scholar
Shaikevich, E.V., Karan, L.S. & Fydorova, M.V. (2016) Comparative analysis of the circadian rhythm genes period and timeless in Culex pipiens Linnaeus, 1758 (Diptera, Culicidae). Comparative Cytogenetics 10, 483504.Google Scholar
Smith, J.L. & Fonseca, D.M. (2004) Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). The American Journal of Tropical Medicine and Hygiene 70, 339345.Google Scholar
Talbalaghi, A. & Shaikevich, E. (2011) Molecular approach for identification of mosquito species (Diptera: Culicidae) in Province of Alessandria, Piedmont, Italy. European Journal of Entomology 108, 3540.Google Scholar
Vinogradova, E.B. & Shaikevich, E.V. (2007) Morphometric, physiological and molecular characteristics of underground populations of the urban mosquito Culex pipiens Linnaeus f. molestus Forskål (Diptera: Culicidae) from several areas of Russia. Journal of the European Mosquito Control Association 22, 1724.Google Scholar
Vinogradova, E.B., Reznik, S.Y. & Kuprijanova, E.S. (1996) Ecological and geographical variations in the siphonal index of Culex pipiens larvae (Diptera: Culicidae). Bulletin of Entomological Research 86, 281287.Google Scholar
Vinogradova, E.B., Shaikevich, E.V. & Ivanitsky, A.V. (2007) A study of the distribution of the Culex pipiens complex (Insecta: Diptera: Culicidae) mosquitoes in the European part of Russia by molecular methods of identification. Comparative Cytogenetics 1, 129138.Google Scholar
Wang, X., Tu, W.-C., Huang, E.-J., Chen, Y.-H., Chen, J.-H. & Yeh, W.-B. (2017) Identification of disease-transmitting mosquitoes: development of species-specific probes for DNA chip assay using mitochondrial COI and ND2 genes and ribosomal internal transcribed spacer 2. Journal of Medical Entomology 54, 396402.Google Scholar
Weir, B.S. & Cockerham, C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google Scholar
Xia, X. (2017) DAMBE6: new tools for microbial genomics, phylogenetics, and molecular evolution. Journal of Heredity 108, 431437.Google Scholar
Zittra, C., Flechl, E., Kothmayer, M., Vitecek, S., Rossiter, H., Zechmeister, T. & Fuehrer, H.-P. (2016) Ecological characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in eastern Austria. Parasites & Vectors 9, 197.Google Scholar
Supplementary material: Image

Francuski et al. supplementary material

Francuski et al. supplementary material 1

Download Francuski et al. supplementary material(Image)
Image 398.8 KB
Supplementary material: File

Francuski et al. supplementary material

Francuski et al. supplementary material 2

Download Francuski et al. supplementary material(File)
File 62 KB
Supplementary material: File

Francuski et al. supplementary material

Francuski et al. supplementary material 3

Download Francuski et al. supplementary material(File)
File 56.3 KB