Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T12:10:01.334Z Has data issue: false hasContentIssue false

Evaluation of temperature gradient gel electrophoresis for the analysis of prey DNA within the guts of invertebrate predators

Published online by Cambridge University Press:  09 March 2007

G.L. Harper
Affiliation:
Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff, CF10 3TL, UK
S.K. Sheppard
Affiliation:
Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff, CF10 3TL, UK
J.D. Harwood
Affiliation:
Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff, CF10 3TL, UK
D.S. Read
Affiliation:
Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff, CF10 3TL, UK
D.M. Glen
Affiliation:
IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol, BS41 9AF, UK
M.W. Bruford
Affiliation:
Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff, CF10 3TL, UK
W.O.C. Symondson*
Affiliation:
Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff, CF10 3TL, UK
*
*Fax: 029 20 874305 E-mail: Symondson@Cardiff.ac.uk

Abstract

The utility of temperature gradient gel electrophoresis (TGGE) as a means of analysing the gut contents of predators was evaluated. Generalist predators consume multiple prey species and a species-specific primer approach may not always be a practical means of analysing predator responses to prey diversity in complex and biodiverse ecosystems. General invertebrate primers were used to amplify the gut contents of predators, generating banding patterns that identified component prey remains. There was no evidence of dominance of the polymerase chain reaction (PCR) by predator DNA. When applied to field samples of the carabid predator Pterostichus melanarius (Illiger) nine banding patterns were detected, including one for aphids. To further distinguish between species, group-specific primers were designed to separate species of earthworm and aphid. TGGE of the earthworm PCR products generated banding patterns that varied with haplotype in some species. Aphid and earthworm DNA could be detected in the guts of carabids for up to 24 h using TGGE. In P. melanarius, with low numbers of prey per insect gut (mean < 3), interpretation of banding patterns proved to be tractable. Potential problems of interpretation of TGGE gels caused by multiple prey bands, cryptic bands, haplotype variation, taxonomic uncertainties (especially with regard to earthworms), secondary predation, scavenging and presence of parasites and parasitoids in the prey or the predators, are discussed. The results suggest that PCR, using combinations of general invertebrate and group-specific primers followed by TGGE, provides a potentially useful approach to the analysis of multiple uncharacterized prey in predators.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agustí, N., de Vicente, C., Gabarra, R. (1999) Development of sequence characterized amplified region (SCAR) markers of Helicoverpa armigera: a new polymerase chain reaction-based technique for predator gut analysis Molecular Ecology 8 14671474CrossRefGoogle ScholarPubMed
Agustí, N., de Vicente, C., Gabarra, R. (2000) Developing SCAR markers to study predation on Trialeurodes vaporariorum Insect Molecular Biology 9 263268CrossRefGoogle ScholarPubMed
Agustí, N., Shayler, S.P., Harwood, J.D., Vaughan, I.P., Sunderland, K.D., Symondson, W.O.C. (2003a) Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers Molecular Ecology 12 34673475CrossRefGoogle ScholarPubMed
Agustí, N., Unruh, T.R., Welter, S.C. (2003b) Detecting Cacopsylla pyricola (Hemiptera: Psyllidae) in predator guts using COI mitochondrial markers Bulletin of Entomological Research 93 179185CrossRefGoogle ScholarPubMed
Calder, C.R., Harwood, J.D., Symondson, W.O.C. (2005) Detection of scavenged material in the guts of predators using monoclonal antibodies: a significant source of error in measurement of predation Bulletin of Entomological Research 95 5762CrossRefGoogle ScholarPubMed
Chen, Y., Giles, K.L., Payton, M.E., Greenstone, M.H. (2000) Identifying key cereal aphid predators by molecular gut analysis Molecular Ecology 9 18871898CrossRefGoogle ScholarPubMed
Cuthbertson, A.G.S., Fleming, C.C., Murchie, A.K. (2003) Detection of Rhopalosiphum insertum (apple–grass aphid) predation by the predatory mite Anystis baccarum using molecular gut analysis Agricultural and Forest Entomology 5 219225CrossRefGoogle Scholar
Deagle, B.E., Jarman, S.N., Pemberton, D., Gales, N.J. (2005) Genetic screening for prey in the gut contents from a giant squid (Architeuthis sp.) Journal of Heredity 96 417423CrossRefGoogle ScholarPubMed
Dodd, C.S., Bruford, M.W., Symondson, W.O.C., Glen, D.M. (2003) Detection of slug DNA within carabid predators using prey-specific PCR primers. pp.13 – 20 Dussart, G.B.J.(Eds), Slug and snail pests: agricultural, veterinary and environmental perspectives. UK British Crop Protection CouncilGoogle Scholar
Felske, A., Akkermans, A.D.L., de Vos, W.D. (1998) Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription – PCR in temperature gradient gel electrophoresis fingerprints Applied and Environmental Microbiology 64 45814587CrossRefGoogle ScholarPubMed
Foltan, P., Sheppard, S.K., Konvicka, M., Symondson, W.O.C. (2005) The significance of facultative scavenging in generalist predator nutrition: detecting decayed prey in the guts of predators using PCR Molecular Ecology 14 41474158CrossRefGoogle ScholarPubMed
Foucher, A., Wilson, M. (2002) Development of a polymerase chain reaction-based denaturing gradient gel electrophoresis technique to study nematode species biodiversity using the 18s rDNA gene Molecular Ecology Notes 2 4548Google Scholar
Greenstone, M.H. (1979) Spider behaviour optimises dietary essential amino acid composition Nature 282 501503CrossRefGoogle Scholar
Harper, G.L., King, R.A., Dodd, C.S., Harwood, J.D., Glen, D.M., Bruford, M.W., Symondson, W.O.C. (2005) Rapid screening of invertebrate predators for multiple prey DNA targets Molecular Ecology 14 819827CrossRefGoogle ScholarPubMed
Harwood, J.D., Phillips, S.W., Sunderland, K.D., Symondson, W.O.C. (2001) Secondary predation: quantification of food chain errors in an aphid–spider–carabid system using monoclonal antibodies Molecular Ecology 10 20492057CrossRefGoogle Scholar
Heethoff, M., Etzold, K., Scheu, S. (2004) Mitochondrial COII sequences indicate that the parthenogenic earthworm Octolasion tyrtaeum (Savigny 1926) constitutes of two lineages differing in body size and genotype Pedobiologia 48 913CrossRefGoogle Scholar
Hickson, R.E., Simon, C., Copper, A., Spicer, G.S., Sullivan, J., Penny, D. (1996) Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA Molecular Biology and Evolution 13 150169CrossRefGoogle Scholar
Hoogendoorn, M., Heimpel, G.E. (2001) PCR-based gut content analysis of insect predators: using ribosomal ITS-1 fragments from prey to estimate predation frequency Molecular Ecology 10 20592067CrossRefGoogle ScholarPubMed
Jarman, S.N., Deagle, B.E., Gales, N.J. (2004) Group-specific PCR for DNA-based analysis of species diversity and identity in dietary samples Molecular Ecology 13 13131322CrossRefGoogle ScholarPubMed
Juen, A., Traugott, M. (2005) Detecting predation and scavenging by DNA gut content analysis: a case study using a soil insect predator–prey system Oecologia 142 344352CrossRefGoogle ScholarPubMed
Kaspar, M.L., Reeson, A.F., Cooper, S.J.B., Perry, K.D., Austin, A.D. (2004) Assessment of prey overlap between a native (Polistes humilis) and an introduced (Vespula germanica) social wasp using morphology and phylogenetic analysis of 16S rDNA Molecular Ecology 13 20372048CrossRefGoogle Scholar
Mayntz, D., Raubenheimer, D., Salomon, M., Toft, S., Simpson, S.J. (2005) Nutrient-specific foraging in invertebrate predators Nature 307 111113Google ScholarPubMed
McCaig, A.E., Glover, L.A., Prosser, J.I. (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures Applied and Environmental Microbiology 65 17211730CrossRefGoogle ScholarPubMed
McCaig, A.E., Glover, L.A., Prosser, J.I. (2001) Numerical analysis of grassland bacterial community structure under different land management regimes by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns Applied and Environmental Microbiology 67 45544559CrossRefGoogle Scholar
Muyzer, G., De Waal, E.C., Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA Applied and Environmental Microbiology 59 695700CrossRefGoogle Scholar
Myers, R.M., Fischer, S.G., Lerman, L.S., Mantiatis, T. (1985) Nearly all single base substitutions in DNA fragments joined to a gc-clamp can be detected by denaturing gradient gel electrophoresis Nucleic Acids Research 13 31313145CrossRefGoogle ScholarPubMed
Nakatsu, C.H., Torsvik, V., Ovreas, L. (2000) Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products Soil Science Society of America Journal 64 13821388CrossRefGoogle Scholar
Oelbermann, K., Scheu, S. (2002) Effects of prey type and mixed diets on survival, growth and development of a generalist predator, Pardosa lugubris Basic and Applied Ecology 3 285291CrossRefGoogle Scholar
Riesner, D., Henco, K., Steger, G. (1991) Temperature gradient gel electrophoresis: a method for the analysis of conformational transitions and mutations in nucleic acids and proteins Advances in Electrophoresis 4 169250Google Scholar
Satchell, J.E. (1967) Colour dimorphism in Allolobophora chlorotica Sav. (Lumbricidae) Journal of Animal Ecology 36 623630CrossRefGoogle Scholar
Sheffield, V.C., Cox, D.R., Lerman, L.S., Myers, R.M. (1989) Attachment of a 40-base pair G+C-rich sequence (GC clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single base pair changes Proceedings of the National Academy of Sciences, USA 86 232236CrossRefGoogle Scholar
Sheppard, S.K., Harwood, J.D. (2005) Advances in molecular ecology: tracking trophic links through predator–prey food webs Functional Ecology 19 751762CrossRefGoogle Scholar
Sheppard, S.K., Henneman, M.L., Memmott, J., Symondson, W.O.C. (2004) Infiltration of alien predators into invertebrate food-webs in Hawaii: a molecular approach Molecular Ecology 13 20772088CrossRefGoogle ScholarPubMed
Sheppard, S.K., McCarthy, A.J., Loughnane, J.P., Gray, N.D., Head, I.M., Lloyd, D. (2005a) The impact of sludge amendment on methanogen community structure in an upland soil Applied Soil Ecology 28 147162CrossRefGoogle Scholar
Sheppard, S.K., Bell, J., Sunderland, K.D., Fenlon, J., Skervin, D., Symondson, W.O.C (2005b) Detection of secondary predation by PCR analysis of the gut contents of invertebrate generalist predators Molecular Ecology 14 44614468CrossRefGoogle Scholar
Simms, R.W., Gerard, B.M. (1985) Earthworms London E.J.Brill/W. Backhuys.CrossRefGoogle Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers Annals of the Entomological Society of America 87 651701CrossRefGoogle Scholar
Sunderland, K.D. (1996) Progress in quantifying predation using antibody techniques.pp.219 – 455 Symondson, W.O.C.Liddell, J.E.The ecology of agricultural pests –biochemical approaches, London: Chapman & Hall.Google Scholar
Sunnucks, P., Hales, D.F. (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphis of the genus Sitobion (Hemiptera: Aphididae) Molecular Biology and Evolution 13 510524CrossRefGoogle Scholar
Sutherland, R.M. (2000) Molecular analysis of avian diets. PhD Thesis, University of Oxford.Google Scholar
Symondson, W.O.C. (2002) Molecular identification of prey in predator diets Molecular Ecology 11 627641CrossRefGoogle ScholarPubMed
Taberlet, P., Fumagalli, L. (1996) Owl pellets as a source for genetic studies of small mammals Molecular Ecology 5 301305CrossRefGoogle ScholarPubMed
Toft, S., Wise, D.H. (1999) Growth, development and survival of a generalist predator fed single- and mixed-species diets of different quality Oecologia 119 191197CrossRefGoogle ScholarPubMed
Torsvik, V., Sorheim, R., Goksoyr, J. (1996) Total bacterial diversity in soil and sediment communities: a review Journal of Industrial Microbiology 17 170178Google Scholar
Uetz, G.W., Bischoff, J., Raver, J. (1992) Survivorship of wolf spiders (Lycosidae) reared on different diets Journal of Arachnology 20 207211Google Scholar
Walrant, A., Loreau, M. (1995) Comparison of iso-enzyme electrophoresis and gut content examination for determining the natural diets of the groundbeetle species Abax ater (Coleoptera: Carabidae) Entomologia Generalis 19 253259CrossRefGoogle Scholar
Zaidi, R.H., Jaal, Z., Hawkes, N.J., Hemingway, J., Symondson, W.O.C. (1999) Can the detection of prey DNA amongst the gut contents of invertebrate predators provide a new technique for quantifying predation in the field Molecular Ecology 8 20812088CrossRefGoogle Scholar