Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T08:53:18.373Z Has data issue: false hasContentIssue false

Feeding behavior and social interactions of the Argentine ant Linepithema humile change with sucrose concentration

Published online by Cambridge University Press:  11 April 2016

F.J. Sola
Affiliation:
Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II, (C1428 EHA) Buenos Aires, Argentina
R. Josens*
Affiliation:
Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II, (C1428 EHA) Buenos Aires, Argentina
*
*Author for correspondence Phone: +54 11 4576 3445 Fax: +54 11 4576 3447 E-mail: roxy@bg.fcen.uba.ar

Abstract

Liquid sugar baits are well accepted by the Argentine ant Linepithema humile and are suitable for the chemical control of this invasive species. We evaluated how sugar concentrations affect the foraging behavior of L. humile individuals. We quantified feeding variables for individual foragers (ingested load, feeding time and solution intake rate) when feeding on sucrose solutions of different concentrations, as well as post-feeding interactions with nestmates. Solutions of intermediate sucrose concentrations (10–30%) were the most consumed and had the highest intake rates, whereas solutions of high sucrose concentrations (60 and 70%) resulted in extended feeding times, low intake rates and ants having smaller crop loads. In terms of post-feeding interactions, individuals fed solutions of intermediate sucrose concentrations (20%) had the highest probability of conducting trophallaxis and the smallest latency to drop exposure (i.e. lowest time delay). Trophallaxis duration increased with increasing sucrose concentrations. Behavioral motor displays, including contacts with head jerking and walking with a gaster waggle, were lowest for individuals that ingested the more dilute sucrose solution (5%). These behaviors have been previously suggested to act as a communication channel for the activation and/or recruitment of nestmates. We show here that sucrose concentration affects feeding dynamics and modulates decision making related to individual behavior and social interactions of foragers. Our results indicate that intermediate sucrose concentrations (ca. 20%), appear to be most appropriate for toxic baits because they promote rapid foraging cycles, a high crop load per individual, and a high degree of stimulation for recruitment.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ávila Núñez, J.L., Naya, M., Calcagno-Pissarelli, M.P. & Otero, L.D. (2011) Behaviour of Odontomachus chelifer (Latreille) (Formicidae: Ponerinae). Feeding on sugary liquids. Journal of Insect Behavior 24(3), 220229.CrossRefGoogle Scholar
Baker, T.C., Key, S.V.V. & Gaston, L.K. (1985) Bait-preference tests for the Argentine ant (Hymenoptera: Formicidae). Journal of Economic Entomology 78(5), 10831088.CrossRefGoogle Scholar
Bonser, R., Wright, P.J., Bament, S. & Chukwu, U.O. (1998) Optimal patch use by foraging workers of Lasius fuliginosus, L. niger and Myrmica ruginodis . Ecological Entomology 23(1), 1521.CrossRefGoogle Scholar
Boser, C.L., Hanna, C., Faulkners, K.R., Cory, C., Randall, J.M.& Morrison, S.A. (2014) Argentine ant management in conservation areas: results of a pilot study. Monographs of the Western North American Naturalist 7, 518530.CrossRefGoogle Scholar
Breed, M.D., Bowden, R.M., Garry, M.F. & Weicker, A.L. (1996) Giving-up time variation in response to differences in nectar volume and concentration in the giant tropical ant, Paraponera clavata (Hymenoptera: Formicidae). Journal of Insect Behavior 9(5), 659672.CrossRefGoogle Scholar
Buczkowski, G., Roper, E., Chin, D., Mothapo, N. & Wossler, T. (2014) Hydrogel baits with low-dose thiamethoxam for sustainable Argentine ant management in commercial orchards. Entomologia Experimentalis et Applicata 153, 183190.CrossRefGoogle Scholar
Cassill, D.L. (2003) Rules of supply and demand regulate recruitment to food in an ant society. Behavioral Ecology and Sociobiology 54(5), 441450.CrossRefGoogle Scholar
Cassill, D.L. & Tschinkel, W.R. (1999) Regulation of diet in the fire ant, Solenopsis invicta . Journal of Insect Behavior 12, 307328.CrossRefGoogle Scholar
Davidson, D.W., Cook, S.C. & Snelling, R.R. (2004) Liquid-feeding performances of ants (Formicidae): ecological and evolutionary implications. Oecologia 139, 255266.CrossRefGoogle ScholarPubMed
De Biseau, J.C. & Pasteels, J.M. (1994) Regulated food recruitment through individual behavior of scouts in the ant, Myrmica sabuleti (Hymenoptera: Formicidae). Journal of Insect Behavior 7(6), 767777.CrossRefGoogle Scholar
De Marco, R. & Farina, W. (2001) Changes in food source profitability affect the trophallactic and dance behavior of forager honeybees (Apis mellifera L.). Behavioral Ecology and Sociobiology 50(5), 441449.CrossRefGoogle Scholar
Detrain, C. & Deneubourg, J.L. (2008) Collective decision-making and foraging patterns in ants and honeybees. Advances in Insect Physiology 35, 123173.CrossRefGoogle Scholar
Detrain, C. & Prieur, J. (2014) Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources. Journal of Insect Physiology 64, 7480.CrossRefGoogle ScholarPubMed
Detrain, C., Deneubourg, J.L. & Pasteels, J.M. (1999) Decision-making in foraging by social insects. pp. 331354 in Detrain, C., Deneubourg, J.L. & Pasteels, J.M. (Eds) Information Processing in Social Insects. Basel, Birkhäuser Verlag.CrossRefGoogle Scholar
Dussutour, A. & Simpson, S.J. (2008) Carbohydrate regulation in relation to colony growth in ants. Journal of Experimental Biology 211, 22242232.CrossRefGoogle ScholarPubMed
Falibene, A. & Josens, R. (2008) Nectar intake rate is modulated by changes in sucking pump activity according to colony starvation in carpenter ants. Journal of Comparative Physiology A 194(5), 491500.CrossRefGoogle ScholarPubMed
Falibene, A., de Figueiredo Gontijo, A. & Josens, R. (2009) Sucking pump activity in feeding behaviour regulation in carpenter ants. Journal of Insect Physiology 55(6), 518524.CrossRefGoogle ScholarPubMed
Farina, W.M. (1996) Food-exchange by foragers in the hive – a means of communication among honey bees?. Behavioral Ecology and Sociobiology 38(1), 5964.CrossRefGoogle Scholar
Farina, W.M. & Grüter, C. (2009) Trophallaxis: a mechanism of information transfer. pp 173188 in Jarau, S. & Hrncir, M. (Eds) Food Exploitation by Social Insects: Ecological, Behavioral, and Theoretical Approaches. Boca Raton, CRC Press.Google Scholar
Gordon, D.M. (2007) Control without hierarchy. Nature 446(7132), 143143.CrossRefGoogle ScholarPubMed
Gordon, D.M., Holmes, S. & Nacu, S. (2008) The short-term regulation of foraging in harvester ants. Behavioural Ecology 19, 217222.CrossRefGoogle Scholar
Gordon, D.M., Guetz, A., Greene, M.J. & Holmes, S. (2011) Colony variation in the collective regulation of foraging by harvester ants. Behavioural Ecology 22, 429435. PMID: 22479133CrossRefGoogle ScholarPubMed
Harder, L.D. (1986) Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia 69(2), 309315.CrossRefGoogle ScholarPubMed
Heller, N.E., Ingram, K.K. & Gordon, D.M. (2008) Nest connectivity and colony structure in unicolonial Argentine ants. Insectes Sociaux 55, 397403.CrossRefGoogle Scholar
Heyneman, A.J. (1983) Optimal sugar concentrations of floral nectars – dependence on sugar intake efficiency and foraging costs. Oecologia 60(2), 198213.CrossRefGoogle ScholarPubMed
Hölldobler, B. (1971) Recruitment behavior in Camponotus socius (Hym. Formicidae). Journal of Comparative Physiology A 75(2), 123142.Google Scholar
Hölldobler, B. (1999) Multimodal signals in ant communication. Journal of Comparative Physiology A 184(2), 129141.Google Scholar
Hölldobler, B. & Wilson, E.O. (2008) The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. NY, USA, W.W. Norton and Co. Ltd.Google Scholar
Josens, R. (2002) Nectar feeding and body size in the ant Camponotus mus . Insectes Sociaux 49, 326330.CrossRefGoogle Scholar
Josens, R. & Farina, W.M. (1997) Selective choice of sucrose solution concentration by the hovering hawk moth Macroglossum stellatarum . Journal of Insect Behaviour 10(5), 651657.CrossRefGoogle Scholar
Josens, R. & Farina, W.M. (2001) Nectar feeding by the hovering hawk moth Macroglossum stellatarum: intake rate as a function of viscosity and concentration of sucrose solutions. Journal of Comparative Physiology A 187(8), 661665.CrossRefGoogle ScholarPubMed
Josens, R. & Roces, F. (2000) Foraging in the ant Camponotus mus: nectar-intake rate and crop filling depend on colony starvation. Journal of Insect Physiology 46(7), 11031110.CrossRefGoogle ScholarPubMed
Josens, R., Farina, W.M. & Roces, F. (1998) Nectar feeding by the ant Camponotus mus: intake rate and crop filling as a function of sucrose concentration. Journal of Insect Physiology 44(7), 579585.CrossRefGoogle Scholar
Kim, W., Gilet, T. & Bush, J.W. (2011) Optimal concentrations in nectar feeding. Proceedings of the National Academy of Sciences of the United States of America 108(40), 1661816621.CrossRefGoogle ScholarPubMed
Kingsolver, J.G. & Daniel, T.L. (1979) On the mechanics and energetics of nectar feeding in butterflies. Journal of Theoretical Biology 76(2), 167179.CrossRefGoogle ScholarPubMed
Kingsolver, J.G. & Daniel, T.L. (1995) Mechanics of food handling by fluid-feeding insects. pp. 3273 in Chapman, R.F. & de Boer, G. (Eds) Regulatory Mechanisms in Insect Feeding. New York, Chapman & Hall.CrossRefGoogle Scholar
Klotz, J.H., Greenberg, L. & Venn, E.C. (1998) Liquid boric acid bait for control of Argentine ant (Hymenoptera: Formicidae). Journal of Economical Entomology 91, 910914.CrossRefGoogle Scholar
Klotz, J.H., Rust, M.K., Costa, H.S., Reierson, D.A. & Kido, K. (2002) Strategies for controlling Argentine ants (Hymenoptera: Formicidae) with sprays and baits. Journal of Agricultural and Urban Entomology 19, 8594.Google Scholar
Lach, L. (2003) Invasive ants: unwanted partners in ant-plant interactions? Annals of the Missouri Botanical Garden 90, 91108.CrossRefGoogle Scholar
Lach, L. (2005) Interference and exploitation competition of three nectar-thieving invasive ant species. Insectes Sociaux 52(3), 257262.CrossRefGoogle Scholar
Lach, L. (2007) A mutualism with a native membracid facilitates pollinator displacement by Argentine ants. Ecology 88(8), 19942004.CrossRefGoogle ScholarPubMed
Mailleux, A.C., Deneubourg, J.L. & Detrain, C. (2000) How do ants assess food volume? Animal Behaviour 59(5), 10611069.CrossRefGoogle ScholarPubMed
Mailleux, A.C., Detrain, C. & Deneubourg, J.L. (2006) Starvation drives a threshold triggering communication. Journal of Experimental Biology 209(21), 42244229.CrossRefGoogle ScholarPubMed
Mailleux, A.C., Buffin, A., Detrain, C. & Deneubourg, J.L. (2010) Recruiter or recruit: who boosts the recruitment in starved nests in mass foraging ants? Animal Behaviour 79(1), 3135.CrossRefGoogle Scholar
McCabe, S., Farina, W.M. & Josens, R. (2006) Antennation of nectar-receivers encodes colony needs and food-source profitability in the ant Camponotus mus . Insectes Sociaux 53(3), 356361.CrossRefGoogle Scholar
Möglich, M. & Hölldobler, B. (1975) Communication and orientation during foraging and emigration in the ant Formica fusca . Journal of Comparative Physiology A 101(4), 275288.CrossRefGoogle Scholar
Nyamukondiwa, C. & Addison, P. (2014) Food preference and foraging activity of ants: recommendations for field applications of low-toxicity baits. Journal of Insect Science 14(1), 48.CrossRefGoogle ScholarPubMed
Paul, J. & Roces, F. (2003) Fluid intake rates in ants correlate with their feeding habits. Journal of Insect Physiology 49(4), 347357.CrossRefGoogle ScholarPubMed
Provecho, Y. & Josens, R. (2009) Olfactory memory established during trofalaxia affects food search behaviour in ants. Journal of Experimental Biology 212, 32213227.CrossRefGoogle ScholarPubMed
Raimundo, R.L.G., Freitas, A.V.L. & Oliveira, P.S. (2009) Seasonal patterns in activity rhythm and foraging ecology in the neotropical forest dwelling ant, Odontomachus chelifer (Formicidae: Ponerinae). Annals of the Entomological Society of America 102, 11511157.CrossRefGoogle Scholar
Roubik, D.W. & Buchmann, S.L. (1984) Nectar selection by Melipona and Apis mellifera (Hymenoptera: Apidae) and the ecology of nectar intake by bee colonies in a tropical forest. Oecologia 61(1), 110.CrossRefGoogle Scholar
Rust, M.K., Reierson, D.A., Paine, E. & Blum, L.J. (2000) Seasonal activity and bait preferences of the Argentine ant (Hymenoptera: Formicidae). Journal of Agricultural and Urban Entomology 17, 201212.Google Scholar
Rust, M.K., Soeprono, A., Wright, S., Greenberg, L., Choe, D., BVoser, C.L., Cory, C. & Hanna, C. (2015) Laboratory and field evaluation sof polyacrylamide hytdorgel baits against Argentine ants (Hymenoptera: Formicidae). Journal of Economic Entomology 108, 12281236.CrossRefGoogle Scholar
Sanders, N.J. & Suarez, A.V. (2011) Elton's insights into the ecology of ant invasions: lessons learned and lessons still to be learned. pp. 239251 in Richardson, D.M. (Ed.) Fifty Years of Invasion Ecology: The legacy of Charles Elton. Oxford, Blackwell Publishing.Google Scholar
Schilman, P.E. & Roces, F. (2006) Foraging energetics of a nectar-feeding ant: metabolic expenditure as a function of food-source profitability. Journal of Experimental Biology 209(20), 40914101.CrossRefGoogle ScholarPubMed
Silverman, J. & Roulston, T.A.H. (2001) Acceptance and Intake of Gel and Liquid Sucrose Compositions by the Argentine ant (Hymenoptera: Formicidae). Journal of Economic Entomology 94(2), 511515.CrossRefGoogle ScholarPubMed
Silverman, J. & Brightwell, R.J. (2008) The Argentine ant: challenges in managing an invasive unicolonial pest. Annual Review of Entomology 53, 231252.CrossRefGoogle ScholarPubMed
Sudd, J.H. (1957) Communication and recruitment in pharaoh's ant, Monomorium pharaonis (L.). The British Journal of Animal Behaviour 5(3), 104109.CrossRefGoogle Scholar
Szlep, R. & Jacobi, T. (1967) The mechanism of recruitment to mass foraging in colonies of Monomorium venustum Smith, M. subopacum ssp. Phœnicium Em., Tapinoma israelis For. and T. Simothi v. Phœnicium Em. Insectes Sociaux 14(1), 2540.CrossRefGoogle Scholar
Szlep-Fessel, R. (1970) The regulatory mechanism in mass foraging and the recruitment of soldiers in Pheidole. Insectes Sociaux 17(4), 233244.CrossRefGoogle Scholar
Tillberg, C.V., Holway, D.A., LeBrun, E.G., & Suarez, A.V. (2007) Trophic ecology of invasive Argentine ants in their native and introduced ranges. Proceedings of the National Academy of Sciences of the United States of America 104(52), 2085620861.CrossRefGoogle ScholarPubMed
Van Vorhis Key, S.E. & Baker, T.C. (1986) Observations on the trail deposition and recruitment behaviors of the Argentine ant, Iridomyrmex humilis (Hymenoptera: Formicidae). Annals of the Entomological Society of America 79(2), 283288.Google Scholar
Wilson, E.O. (1971) The Insect Societies. Cambridge, MA, Belknap Press, 548 p.Google Scholar
Wolf, A.V., Brown, M.G. & Prentiss, P.F. (1984) Concentrative properties of aqueous solutions: conversion tables. pp. 223272 in Weast, R.C. (Ed.) CRC Handbook of Chemistry and Physics. 64th edn. Boca Raton, CRC Press.Google Scholar