Hostname: page-component-6bf8c574d5-r4mrb Total loading time: 0 Render date: 2025-03-09T02:25:27.173Z Has data issue: false hasContentIssue false

Impact of temperature on development and reproduction of the olive black scale Saissetia oleae (Olivier) (Hemiptera: Coccidae)

Published online by Cambridge University Press:  03 March 2025

Mohamed El Aalaoui*
Affiliation:
National Institute of Agricultural Research, Rabat, Morocco
Fouad Mokrini
Affiliation:
National Institute of Agricultural Research, Rabat, Morocco
Mohamed Sbaghi
Affiliation:
National Institute of Agricultural Research, Rabat, Morocco
*
Corresponding author: Mohamed El Aalaoui; Email: mohamedelaalaoui@gmail.com

Abstract

The olive black scale, Saissetia oleae (Olivier), is a significant pest of olive crops worldwide. The developmental, reproductive, and population growth parameters of S. oleae were evaluated under five constant temperature conditions (18°C to 33°C). Developmental durations significantly decreased with increasing temperatures. Female lifespan decreased from 161.6 days at 18°C to 104.3 days at 33°C, while male lifespan decreased from 96.8 days at 18°C to 49.4 days at 33°C. The highest sex ratio (proportion of females) of 0.35 was observed at 30°C, with pre-adult survival rates of 63%, while survival rates dropped to 28% at 18°C. Parthenogenesis was not observed in females. The total pre-oviposition and post-oviposition periods decreased with increasing temperature, with the longest oviposition period at 33°C (49.6 days). Maximum fecundity was recorded at 33°C (379.0 eggs/female), followed by 30°C (298.6 eggs/female), and decreased sharply at 18°C (90.1 eggs/female). The intrinsic rate of increase (r) was highest at 30 and 33°C (0.038 d⁻1), while the net reproductive rate (R0) peaked at 30°C (104.5 offspring/female). The predicted fecundity of the next generation showed significant potential growth at 27 and 30°C, with the population increasing 65.3 times at 30°C and 39.4 times at 27°C. The developmental threshold for S. oleae was highest for first-instar nymphs (7.58°C), while second-instar nymphs had lower thresholds (1.09–1.65°C), with total pre-adult development requiring 1250 degree-days for both males and females. These findings underscore the significant impact of temperature on the development and reproduction of S. oleae, with implications for pest management in olive orchards.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, N, Shad, SA and Razaq, M (2012) Fitness cost, cross resistance and realized heritability of resistance to imidacloprid in Spodoptera litura (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology 103, 181188.CrossRefGoogle Scholar
Abd El-Mageed, TA, Semida, WM and Rady, MM (2017) Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agricultural Water Management 193, 4654.CrossRefGoogle Scholar
Abd-Rabou, S (2005) Importation, colonization and establishment of Coccophagus cowperi Gir. (Hymenoptera: Aphelinidae) on Saissetia coffeae (Walk.) (Homoptera: Coccidae). Egypt Journal of Pest-Science 78(2), 7781.Google Scholar
Abd-Rabou, S, Ali, N and El-Fatih, MM (2009) Life table of the hemispherical scale, Saissetia coffeae (Walker) (Hemiptera: Coccidea). Egyptian Academic Journal of Biological Sciences. A, Entomology 2(2), 165170.CrossRefGoogle Scholar
Albuquerque Junior, PS, Silva, CAD, Ramos, RS, Zanuncio, JC and Castellani, MA (2023) Diaspis echinocacti (Hemiptera: Diaspididae) on cactus pear cladodes: Biological aspects at different temperatures. Brazilian Journal of Biology 83, e274016.CrossRefGoogle ScholarPubMed
Alonso, A (2001) Eficacia de varios insecticidas sobre la Caparreta Negra Saissetia oleae en cítricos. Levante Agrícola: Revista Internacional de Cítricos 356, 195200.Google Scholar
Amarasekare, KG, Chong, JH, Epsky, ND and Mannion, CM (2008) Effect of temperature on the life history of the mealybug Paracoccus marginatus (Hemiptera: Pseudococcidae). Journal of Economic Entomology 101, 17981804.CrossRefGoogle ScholarPubMed
Andrewartha, HG and Birch, LC (1954) In The Distribution and Abundance of Animals. Chicago and London: University of Chicago Press, 782.Google Scholar
Argov, Y and Rossler, Y (1993) Biological control of the Mediterranean black scale, Saissetia oleae (Hom.: Coccidae) in Israel. Entomophaga 38(1), 89100.CrossRefGoogle Scholar
Argyriou, LC (1963) Studies on the morphology and biology of the black scale (Saissetia oleae [Bernhard]) in Greece. Annales de l’Institut Phytopathologique Benaki 5, 353377.Google Scholar
Asmaa, G and Mohamed, B (2020) First biological data on the life history and population dynamics of Octaspidiotus nerii (Homoptera: Diaspididae), Saissetia oleae (Homoptera: Lecanidae) and Pollinia pollini (Homoptera: Asterolecanidae) on olive trees in the Blida Region (Algeria). Ukrainian Journal of Ecology 10(5), 6268.CrossRefGoogle Scholar
Aysal, T and Kivan, M (2008) Development and population growth of Stephanitis pyri (F.) (Heteroptera: Tingidae) at five temperatures. Journal of Pest Science 81, 135141.CrossRefGoogle Scholar
Blumberg, D, Swirski, E and Greenberg, S (1975) Evidence for bivoltine populations of the Mediterranean black scale Saissetia oleae (Olivier) on citrus in Israel. Israel Journal of Entomology 10, 1924.Google Scholar
Briales, MJ and Campos, M (1988) Estudio de la biologia de Saissetia oleae (Olivier, 1791) (Hom. Coccidae) en Granada (Espana). Boletín de la Asociación Española de Entomología 10, 249256.Google Scholar
Briere, JF, Pracros, P, Le Roux, AY and Pierre, JS (1999) A novel rate model of temperature-dependent development for arthropods. Environmental Entomology 28, 2229.CrossRefGoogle Scholar
Boller, EF, Avilla, J, Joerg, E, Malavolta, C, Wijnands, FG and Esbjerg, P (2004) Integrated production. Principles and technical guidelines, 3rd edn. IOBC/WPRS Bulletin 27, 54.Google Scholar
Campbell, A, Frazer, BD, Gilbert, N, Gutierrez, AP and Mackauer, M (1974) Temperature requirements of some aphids and their parasites. Journal of Applied Ecology 11, 431438.CrossRefGoogle Scholar
Chi, H and Liu, H (1985) Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica 24, 225240.Google Scholar
Chi, H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology 17, 2634.CrossRefGoogle Scholar
Chi, H (2017) TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/ (accessed 5 May 2017)Google Scholar
Coutinho, C (2011) In A Cochonilha Negra (Saissetia Oleae Olivier). Mirandela: DRAPN, 3.Google Scholar
Cozzi, G, Stornelli, C, Moretti, A, Logrieco, A and Porcelli, F (2002) Field evaluation of Fusarium larvarum formulations in the biocontrol of Saissetia oleae on olive in Apulia. Acta Horticulturae 586, 811814.CrossRefGoogle Scholar
Cruz-Rodríguez, JA, González-Machorro, E, Villegas González, AA, Rodríguez Ramírez, ML and Mejía Lara, F (2016) Autonomous biological control of Dactylopius opuntiae (Hemiptera: Dactyliiopidae) in a prickly pear plantation with ecological management. Environmental Entomology 45, 642648.CrossRefGoogle Scholar
Daane, KM and Caltagirone, LE (1989) Biological control in olive orchards: Cultural practices affect control of black scale. California Agriculture 43, 911.Google Scholar
De Lotto, G (1965) On some Coccidae (Homoptera), chiefly from Africa. Bulletin of the British Museum (Natural History) 16, 175239. doi: 10.5962/bhl.part.21865CrossRefGoogle Scholar
De Lotto, G (1971) A preliminary note on the black scales (Homoptera, Coccidae) of North and Central America. Bulletin of Entomological Research 61(2), 325326.CrossRefGoogle Scholar
De Lotto, G (1976) On the black scales of Southern Europe (Homoptera: Coccoidea: Coccidae). Journal of the Entomological Society of Southern Africa 39(1), 147149.Google Scholar
Efron, B and Tibshirani, R (1993) An introduction to the bootstrap/by Bradley Efron, Robert J. Tibshirani (No. 519.544 E4).CrossRefGoogle Scholar
El Aalaoui, M and Sbaghi, M (2022) Temperature dependence for survival, development, and reproduction of the cactus cochineal Dactylopius opuntiae (Cockerell). Insects 13(5), 426.CrossRefGoogle ScholarPubMed
El Aalaoui, M and Sbaghi, M (2024) Temperature effects on the cactus scale Diaspis echinocacti (Bouché): Insights into development, survival, and reproduction. Crop Protection 179, 106624.CrossRefGoogle Scholar
Elhormiti, M and Laraichi, M (1979) Note sur la biologie de Saissetia oleae (Olivier) (Homoptera, Coccoidea, Coccidae) dans la région de Moulay Idriss du Zerhoun. Al Awamia 57, 7382.Google Scholar
Flint, ML, Kobbe, B, Clark, JK, Dreistadt, SH, Pehrson, JE, Flaherty, DL, O’Connell, NV, Phillips, PA and Morse, JG (1991) Integrated Pest Management for Citrus, 2nd Edn. Oakland, CA: Univ. of California Div. Ag. & Nat. Res. Publ. 3303, 144.Google Scholar
Gill, RJ (1988) The scale insects of California. Part 1. The soft scales (Homoptera: Coccoidea: Technical Services in Coccidae). Agricultural Biosystematics and Plant Pathology, California Department of Food and Agriculture 1, 1132.Google Scholar
Goodman, D (1982) Optimal life histories, optimal notation, and the value of reproductive value. The American Naturalist 119, 803823.CrossRefGoogle Scholar
Hahn, DA and Denlinger, DL (2011) Energetics of insect diapause. Annual Review of Entomology 56(1), 103121.CrossRefGoogle ScholarPubMed
Haniotakis, G (2005) Olive pest control: Present status and prospects. IOBC/WPRS Bulletin 28(9), 19.Google Scholar
Hawkes, NJ, Janes, RW, Hemingway, J and Vontas, J (2005) Detection of resistance-associated point mutations of organophosphate-insensitive acetylcholinesterase in the olive fruit fly, Bactrocera oleae (Gmelin). Pesticide Biochemistry and Physiology 81, 154163.CrossRefGoogle Scholar
Hesterberg, T, Moore, DS, Monaghan, S, Clipson, A and Epstein, R (2005) Bootstrap methods and permutation tests. In Moore, DS and McCabe, GP (eds.), Introduction to the Practice of Statistics, 5th. New York: Freeman and Company.Google Scholar
Hill, DS (1983) Agricultural Insect Pests of the Tropics and Their Control, 2nd Edn. Cambridge, London, New York, New Rochelle, Melbourne, Sydney: Cambridge University Press, 746.Google Scholar
Honěk, A and Kocourek, F (1990) Temperature and development time in insects: A general relationship between thermal constants. Journal of Applied Ecology 117, 401439.Google Scholar
Huang, YB and Chi, H (2013) Life tables of Bactrocera cucurbitae (Diptera: T ephritidae): With an invalidation of the jackknife technique. Journal of Applied Entomology 137(5), 327339. doi:10.1111/jen.12002CrossRefGoogle Scholar
Ibrahim, AG (1985) The effects of temperature on the development of hemispherical scale, Saissetia coffeae (Walker). Pertanika 8(3), 381386.Google Scholar
Ibrahim, AG and Copland, MJW (1987) Effects of temperature on the reproduction of Saissetia coffeae and its parasitoids. International Journal of Tropical Insect Science 8(3), 351353.CrossRefGoogle Scholar
Irwin, JT and JrRE, L (2000) Mild winter temperatures reduce survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). Journal of Insect Physiology 46(5), 655661.CrossRefGoogle Scholar
Jarosik, V, Kratochvil, L, Honek, A and Dixon, AFG (2004) A general rule for the dependence of developmental rate in ectothermic animals. Proceedings of the Royal Society of London. Series B, Biological Sciences (Supplement) 271, S219S221.Google ScholarPubMed
Ju, RT, Wang, F and Li, B (2011) Effects of temperature on the development and population growth of the sycamore lace bug, Corythucha ciliata. Journal of Insect Science 11(16). doi:10.1673/031.011.0116CrossRefGoogle ScholarPubMed
Just, MG and Frank, SD (2020) Thermal tolerance of gloomy scale (Hemiptera: Diaspididae) in the eastern United States. Environmental Entomology 49(1), 104114.CrossRefGoogle ScholarPubMed
Kaf, NA, Mohammed, I and Hasan, A (2019) Life Table Parameters of Ceroplastes floridensis (Homoptera: Coccidae) at Different Temperatures. SSRG International Journal of Agriculture & Environmental Science 6(2), 713.CrossRefGoogle Scholar
Kennett, CE (1980) Occurrence of Metaphycus bartletti Annecke and Mynhardt, a South African parasite of black scale, Saissetia oleae (Olivier) in central and northern California (Hymenoptera: Encyrtidae; Homoptera: Coccidae). Pan-Pacific Entomologist 62, 363369.Google Scholar
Kim, SC, Song, JH and Kim, DS (2008) Effect of temperature on the development and fecundity of the cryptic mealybug Pseudococcus cryptus in the laboratory. Journal of Asia-Pacific Entomology 11, 149153.CrossRefGoogle Scholar
Li-Chen, Y and Hong, S (2002) Effects of temperature on development of the hemispherical scale, Saissetia coffeae (Walker) (Homoptera: Coccidae), and its occurrence on cycad (Cycas taiwanian. Carr.).Formosan Entomologist 22(1), 6574.Google Scholar
Liu, YH and Tsai, JH (2000) Effects of temperature on biology and life table parameters of the Asian citrus psyllid, Diaphorina citri Kunwayama (Homoptera: Psyllidae). Annals of Applied Biology 137, 201206.CrossRefGoogle Scholar
McEwen, PK, Clow, S, Jervis, MA and Kidd, NAC (1993) Alteration in searching behaviour of adult female green lacewings Chrysoperla carnea (Neur.: Chrysopidae) following contact with honeydew of the black scale Saissetia oleae (Hom.: Coccidae) and solutions containing acidhydrolysed L-tryptophan. Entomophaga 38, 347354.CrossRefGoogle Scholar
Mohammed, K, Karaca, I, Agarwal, M, Newman, J and Ren, Y (2020) Age-specific life tables of Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae) and itsparasitoid Aphytis melinus DeBach (Hymenoptera: Aphelinidae). Turkish Journal of Agriculture and Forestry 44(2), 180188.CrossRefGoogle Scholar
Mahzoum, AM, Villa, M, Benhadi-Marín, J and Pereira, JA (2020) Functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) larvae on Saissetia oleae (Olivier)(Hemiptera: Coccidae): Implications for biological control. Agronomy 10(10), 1511.CrossRefGoogle Scholar
Miho, H, Expósito-Díaz, A, Marquez-Perez, MI, Ledesma-Escobar, C, Diez, CM, Prusky, D, Priego-Capote, F and Moral, J (2024) The dynamic changes in olive fruit phenolic metabolism and its contribution to the activation of quiescent Colletotrichum infection. Food Chemistry 450, 139299.CrossRefGoogle Scholar
Morris, RF (1963) Predictive population equation based on key factors. Memoirs of the Entomological Society of Canada 32, 1621.CrossRefGoogle Scholar
Noguera, V, Verdú, MJ, Gómez-Cadenas, A and Jaques, JA (2003) Ciclo biológico, dinámica poblacional y enemigos naturales de Saissetia oleae Olivier (Homoptera: Coccidae), en olivares del Alto Palancia (Castellón). Boletín de Sanidad Vegetal. Plagas 29, 495504.Google Scholar
Ouguas, Y and Chemseddine, M (2011) Effect of pruning and chemical control on Saissetia oleae (Olivier)(Hemiptera, Coccidae) in olives. Fruits 66(3), 225234.CrossRefGoogle Scholar
Panis, A (1977) Observations sur la propagation et les conséquences de la fumagine de l’olivier. Olea (FAO). pp. 5962.Google Scholar
Pincebourde, S and Casas, J (2015) Warming tolerance across insect on togeny: Influence of joint shifts in microclimates and thermal limits. Ecology 96, 986997.CrossRefGoogle Scholar
Prasad, YG, Prabhakar, M, Sreedevi, G, Rao, GR and Venkateswarlu, B (2012) Effect of temperature on development, survival and reproduction of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on cotton. Crop Protection 39, 8188.CrossRefGoogle Scholar
Qin, ZQ, Qiu, BL, Wu, JH, Cuthbertson, AG and Ren, SX (2013) Effect of temperature on the life history of Dysmicoccus neobrevipes (Hemiptera: Pseudoccocidae): An invasive species of gray pineapple mealybug in South China. Crop Protection 45, 141146.CrossRefGoogle Scholar
Régnière, J, Powell, J, Bentz, B and Nealis, V (2012) Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. Journal of Insect Physiology 58, 634647.CrossRefGoogle ScholarPubMed
Santos, SA, Pereira, JA, Torres, LM and Nogueira, AJ (2007) Evaluation of the effects, on canopy arthropods, of two agricultural management systems to control pests in olive groves from north-east of Portugal. Chemosphere 67(1), 131139.CrossRefGoogle ScholarPubMed
Santos, SA, Pereira, JA, da Conceição Rodrigues, M, Torres, LM, Pereira, AMN and Nogueira, AJ (2009) Identification of predator–prey relationships between coccinellids and Saissetia oleae (Hemiptera: Coccidae), in olive groves, using an enzyme-linked immunosorbent assay. Journal of Pest Science 82, 101108.CrossRefGoogle Scholar
Schweizer, H, Morse, JG and Luck, RF (2003) Evaluation of Metaphycus spp. for suppression of black scale (Homoptera: Coccidae) on southern California citrus. Environmental Entomology 32(2), 377386.CrossRefGoogle Scholar
Seyfollahi, F, Esfandiari, M, Mossadegh, MS and Rasekh, A (2016) Life table parameters of the coccinellid Hyperaspis polita, a native predator in Iran, feeding on the invasive mealybug Phenacoccus solenopsis. Journal of Asia-Pacific Entomology 19(3), 835840.CrossRefGoogle Scholar
Sullivan, PR (1990) Population growth potential of Dactylopius ceylonicus Green (Hemiptera: Dactylopiidae) on Opuntia vulgaris Miller. Australian Journal of Entomology 29(2), 123129.CrossRefGoogle Scholar
Tena, A, Soto, A, Vercher, R and Garcia-Marí, F (2007) Density and structure of Saissetia oleae (Hemiptera: Coccidae) populations on citrus and olives: Relative importance of the two annual generations. Environmental Entomology 36(4), 700706.CrossRefGoogle ScholarPubMed
Tran, LT, Worner, SP, Hale, RJ and Teulon, DAJ (2012) Estimating development rate and thermal requirements of Bactericera cockerelli (Hemiptera: Triozidae) reared on potato and tomato by using linear and nonlinear models. Environmental Entomology 41(5), 11901198.CrossRefGoogle ScholarPubMed
Tzanakakis, ME (2003) Seasonal development and dormancy of insects and mites feeding on olive: A review. Netherlands Journal of Zoology 52, 87224.CrossRefGoogle Scholar
Valand, VM, Patel, JI and Mehta, DM (1989) Biology of brown scale (Saissetia coffeae) on pointed gourd (Trichosanthes dioica). Indian J. Agric. Sci 59(9), 610611.Google Scholar
Vidyarthi, EV, Thakur, M, Khela, RK and Roy, S (2024) Edible coatings for fresh produce: Exploring chitosan, beeswax, and essential oils in green chillies and pointed gourd. Food Materials Research 4(1), e026.CrossRefGoogle Scholar
Villa, M, Santos, SA, Benhadi-Marín, J, Mexia, A, Bento, A and Pereira, JA (2016) Life-history parameters of Chrysoperla carnea sl fed on spontaneous plant species and insect honeydews: Importance for conservation biological control. BioControl 61, 533543.CrossRefGoogle Scholar
Villa, M, Marrão, R, Mexia, A, Bento, A and Pereira, JA (2017) Are wild flowers and insect honeydews potential food resources for adults of the olive moth, Prays oleae? Journal of Pest Science 90, 185194.CrossRefGoogle Scholar
Vinogradova, EB and Reznik, SY (2013) Induction of larval diapause in the blowfly, Calliphora vicina R.-D. (Diptera, Calliphoridae) under field and laboratory conditions. Entomological Review 93(8), 935941.CrossRefGoogle Scholar
Walgama, RS and Zalucki, MP (2006) Evaluation of different models to describe egg and pupal development of Xyleborus fornicatus Eichh. (Coleoptera: Scolytidae), the shot hole borer of tea in Sri Lanka. Insect Science 12, 109118.CrossRefGoogle Scholar
Wei, M, Chi, H, Guo, Y, Li, X, Zhao, L and Ma, R (2020) Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) reared on four cultivars of Pyrus bretschneideri (Rosales: Rosaceae) and P. communis Pears with estimations of confidence intervals of specific life table statistics. Journal of Economic Entomology 113(5), 23432353. doi:10.1093/jee/toaa149CrossRefGoogle ScholarPubMed
Worner, SP (1988) Evaluation of diurnal temperature models and thermal summation in New Zealand. Journal of Economic Entomology 81, 913.CrossRefGoogle Scholar
Worner, SP (1992) Performance of phenological models under variable temperature regimes: Consequences of the Kaufmann or rate summation effect. Environmental Entomology 21, 689699.CrossRefGoogle Scholar